Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Exp Physiol ; 109(7): 1145-1162, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38687158

RESUMEN

Limb immobilization causes rapid declines in muscle strength and mass. Given the role of the nervous system in immobilization-induced weakness, targeted interventions may be able to preserve muscle strength, but not mass, and vice versa. The purpose of this study was to assess the effects of two distinct interventions during 1 week of knee joint immobilization on muscle strength (isometric and concentric isokinetic peak torque), mass (bioimpedance spectroscopy and ultrasonography), and neuromuscular function (transcranial magnetic stimulation and interpolated twitch technique). Thirty-nine healthy, college-aged adults (21 males, 18 females) were randomized into one of four groups: immobilization only (n = 9), immobilization + action observation/mental imagery (AOMI) (n = 10), immobilization + neuromuscular electrical stimulation (NMES) (n = 12), or control group (n = 8). The AOMI group performed daily video observation and mental imagery of knee extensions. The NMES group performed twice daily stimulation of the quadriceps femoris. Based on observed effect sizes, it appears that AOMI shows promise as a means of preserving voluntary strength, which may be modulated by neural adaptations. Strength increased from PRE to POST in the AOMI group, with +7.2% (Cohen's d = 1.018) increase in concentric isokinetic peak torque at 30°/s. However, NMES did not preserve muscle mass. Though preliminary, our findings highlight the specific nature of clinical interventions and suggest that muscle strength can be independently targeted during rehabilitation. This study was prospectively registered: ClinicalTrials.gov NCT05072652.


Asunto(s)
Articulación de la Rodilla , Fuerza Muscular , Humanos , Masculino , Femenino , Adulto Joven , Fuerza Muscular/fisiología , Articulación de la Rodilla/fisiología , Adulto , Inmovilización/métodos , Estimulación Eléctrica/métodos , Torque , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Imaginación/fisiología , Rodilla/fisiología , Estimulación Magnética Transcraneal/métodos
2.
Exp Brain Res ; 242(5): 1115-1126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483567

RESUMEN

The use of functional near-infrared spectroscopy (fNIRS) for brain imaging during human movement continues to increase. This technology measures brain activity non-invasively using near-infrared light, is highly portable, and robust to motion artifact. However, the spatial resolution of fNIRS is lower than that of other imaging modalities. It is unclear whether fNIRS has sufficient spatial resolution to differentiate nearby areas of the cortex, such as the leg areas of the motor cortex. Therefore, the purpose of this study was to determine fNIRS' ability to discern laterality of lower body contractions. Activity in the primary motor cortex was recorded in forty participants (mean = 23.4 years, SD = 4.5, female = 23, male = 17) while performing unilateral lower body contractions. Contractions were performed at 30% of maximal force against a handheld dynamometer. These contractions included knee extension, knee flexion, dorsiflexion, and plantar flexion of the left and right legs. fNIRS signals were recorded and stored for offline processing and analysis. Channels of fNIRS data were grouped into regions of interest, with five tolerance conditions ranging from strict to lenient. Four of five tolerance conditions resulted in significant differences in cortical activation between hemispheres. During right leg contractions, the left hemisphere was more active than the right hemisphere. Similarly, during left leg contractions, the right hemisphere was more active than the left hemisphere. These results suggest that fNIRS has sufficient spatial resolution to distinguish laterality of lower body contractions. This makes fNIRS an attractive technology in research and clinical applications in which laterality of brain activity is required during lower body activity.


Asunto(s)
Lateralidad Funcional , Corteza Motora , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Masculino , Femenino , Adulto Joven , Lateralidad Funcional/fisiología , Adulto , Corteza Motora/fisiología , Contracción Muscular/fisiología , Mapeo Encefálico/métodos
3.
Exp Brain Res ; 241(10): 2547-2560, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37707570

RESUMEN

Approaches for validating motor unit firing times following surface electromyographic (EMG) signal decomposition with the precision decomposition III (PDIII) algorithm have not been agreed upon. Two approaches have been common: (1) "reconstruct-and-test" and (2) spike-triggered averaging (STA). We sought to compare motor unit results following the application of these approaches. Surface EMG signals were recorded from the vastus lateralis of 13 young males performing trapezoidal, isometric knee extensions at 50% and 80% of maximum voluntary contraction (MVC) force. The PDIII algorithm was used to quantify motor unit firing rates. Motor units were excluded using eight combinations of the reconstruct-and-test approach with accuracy thresholds of 0, 90, 91, and 92% with and without STA. The mean firing rate versus recruitment threshold relationship was minimally affected by STA. At 80% MVC, slopes acquired at the 0% accuracy threshold were significantly greater (i.e., less negative) than when 91% (p = .010) and 92% (p = .030) accuracy thresholds were applied. The application of STA has minimal influence on surface EMG signal decomposition results. Stringent reconstruct-and-test accuracy thresholds influence motor unit-derived relationships at high forces, perhaps explained through the increased presence of large motor unit action potentials. Investigators using the PDIII algorithm can expect negligible changes in motor unit-derived linear regression relationships with the application of secondary validation procedures.


Asunto(s)
Neuronas Motoras , Músculo Cuádriceps , Masculino , Humanos , Electromiografía/métodos , Neuronas Motoras/fisiología , Músculo Cuádriceps/fisiología , Contracción Muscular/fisiología , Contracción Isométrica , Reclutamiento Neurofisiológico/fisiología , Músculo Esquelético/fisiología , Potenciales de Acción/fisiología
4.
J Strength Cond Res ; 37(9): 1882-1887, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267320

RESUMEN

ABSTRACT: Pagan, JI, Harmon, KK, Girts, RM, MacLennan, RJ, Beausejour, JP, Hernandez-Sarabia, JA, Coker, NA, Carr, JC, Ye, X, DeFreitas, JM, and Stock, MS. Sex-specific reliability of lower-limb corticospinal excitability and silent periods. J Strength Cond Res 37(9): 1882-1887, 2023-Transcranial magnetic stimulation (TMS) is a research tool that has potential to provide new insights into strength training-induced adaptations. However, using TMS to study the lower limbs is challenging, and sex-specific reliability has yet to be reported. We examined the reliability of corticospinal excitability and silent periods for the rectus femoris, vastus lateralis, and biceps femoris in both sexes. Thirteen males and 14 females reported to the laboratory twice. During both trials, a double cone coil was used to deliver 20 pulses to the rectus femoris hotspot with a stimulator output of 130% of active motor threshold. Motor-evoked potential peak-to-peak amplitude, which reflects corticospinal excitability, and silent period duration were quantified. Our results offer 4 novel findings. First, corticospinal excitability and silent period demonstrated higher reliability for the females. Second, regardless of sex and muscle, the silent period was more reliable than corticospinal excitability. Third, reliability was highest for our target muscle (rectus femoris), with lower reliability for the vastus lateralis and biceps femoris, suggesting that these methods cannot be used to study coactivation. Fourth, active motor threshold showed less variability than corticospinal excitability and silent period but increased at trial 2 in females. Many of the intraclass correlation coefficients were excellent (≥0.90), although we attribute this finding to variability between subjects. Reliability of lower-limb TMS measures may be sex, muscle, and variable dependent. Our findings suggest that both males and females should be included in lower-limb TMS research, although combining data between sexes should be approached cautiously.


Asunto(s)
Extremidad Inferior , Músculo Esquelético , Masculino , Femenino , Humanos , Músculo Esquelético/fisiología , Reproducibilidad de los Resultados , Extremidad Inferior/fisiología , Músculo Cuádriceps , Estimulación Magnética Transcraneal/métodos , Electromiografía
5.
Exp Brain Res ; 240(6): 1801-1810, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35488129

RESUMEN

Muscle weakness is a critical problem facing many older adults. Interventions targeting nervous system plasticity may show promise in enhancing strength. The purpose of this study was to examine the acute effects of action observation on muscular strength characteristics and corticospinal excitability in older adults. Isometric wrist flexion strength characteristics and corticospinal excitability of the first dorsal interosseous (FDI) were measured in 14 older adults (mean age = 73 years) in response to observation of (1) STRONG contractions of the hand/wrist, (2) WEAK contractions of the hand/wrist, and (3) a CONTROL condition. Results from repeated measures analyses of variance (ANOVAs) indicated that rate of torque development at 200 ms (RTD200) significantly decreased from PRE to POST observation for CONTROL and WEAK, but not STRONG. No other ANOVAs were significant. However, effect sizes indicated that maximal voluntary contraction (MVC) peak torque showed moderate declines following WEAK (d = - 0.571) and CONTROL (d = - 0.636), but not STRONG (d = 0.024). Similarly, rate of torque development at 30 (RTD30), 50 (RTD50), and 200 (RTD200) ms showed large declines from PRE to POST after WEAK and CONTROL, but small changes following STRONG. FDI motor-evoked potential (MEP) amplitude tended to increase over time, but these results were variable. There was a pronounced effect from PRE to 8MIN (d = 0.954) during all conditions. Action observation of strong contractions may exert a preservatory effect on muscular strength. More work is needed to determine whether this is modulated by increased corticospinal excitability. The study was prospectively registered (ClinicalTrials.gov Identifier: NCT03946709).


Asunto(s)
Contracción Isométrica , Tractos Piramidales , Anciano , Electromiografía , Potenciales Evocados Motores/fisiología , Humanos , Contracción Isométrica/fisiología , Fuerza Muscular/fisiología , Debilidad Muscular , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos
6.
Eur J Appl Physiol ; 121(4): 1145-1157, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33484337

RESUMEN

PURPOSE: The ability to maintain an absolute, submaximal torque level during fatiguing contractions is controlled, in part, by the recruitment of larger motor units. These motor units are commonly identified based on greater action potential peak-to-peak amplitude values. It is unclear, however, if motor unit action potential (MUAP) amplitude values during low torque, fatiguing contractions reach similar levels as those observed during non-fatigued, high torque contractions. To establish a clearer understanding of motor unit control during fatigue, we compared MUAP amplitude during 50 and 80% maximum voluntary contraction (MVC) torque contractions and at the beginning, middle, and end of a 30% MVC fatigue protocol. METHODS: Eleven untrained men (mean age = 24 years) performed isometric contractions at 50 and 80% MVC, followed by repeated contractions at 30% MVC. Surface electromyographic (EMG) signals were detected from the vastus lateralis and decomposed to quantify the peak-to-peak amplitude of individual MUAPs. A two-level multilevel model was estimated, allowing examination of simultaneous measures of MUAP amplitude within participants and controlling for the dependence between measures within participants. RESULTS: Results from the multilevel analyses suggested that there were not statistically significant differences in MUAP amplitude between 80% MVC and end fatigue. Separate repeated-measures analyses of variance indicated that there were not statistically significant mean differences in greatest MUAP or surface EMG amplitude between 80% MVC and end fatigue. CONCLUSIONS: MUAP and surface EMG amplitude values during a 30% MVC fatiguing protocol appear to be comparable to those observed during a non-fatigued 80% MVC condition.


Asunto(s)
Potenciales Evocados Motores , Contracción Isométrica , Fatiga Muscular , Músculo Esquelético/fisiología , Adulto , Humanos , Masculino , Torque
9.
Appl Physiol Nutr Metab ; 49(6): 805-817, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382056

RESUMEN

This manuscript represents the second phase of a clinical trial designed to examine the effects of knee joint immobilization and retraining on muscle strength and mass. In Phase 2, we examined sex differences in the recovery of multiple indices of muscle quality after a resistance training-based rehabilitation program. Following 1 week of immobilization, 27 participants (16 males, 11 females) exhibiting weakness underwent twice weekly resistance training sessions designed to re-strengthen their left knee. Unilateral retraining sessions utilizing leg press, extension, and curl exercises were conducted until participants could reproduce their pre-immobilization knee extension isometric maximal voluntary contraction (MVC) peak torque. Post-immobilization, both sexes demonstrated impaired MVC peak torque (males = -10.8%, females = -15.2%), specific torque (-9.8% vs. -13.1%), echo intensity of the vastus lateralis (+6.9% vs. +5.9%) and rectus femoris (+5.9% vs. +2.1), and extracellular water/intracellular water ratio (+7.8% vs. +9.0%). The number of retraining sessions for peak torque to return to baseline for males (median = 1, mean = 2.13) versus females (median = 2, mean = 2.91) was not significantly different, though the disparity in recovery times may be clinically relevant. Following retraining, specific torque was the only muscle-quality indicator that improved along with MVC peak torque (males = 20.1%, females = 22.4%). Our findings indicate that measures of muscle quality demonstrate divergent recovery rates following immobilization, with muscle mass lagging behind improvements in strength. Greater immobilization-induced strength loss among females suggests that sex-specific rehabilitation efforts may be justified.


Asunto(s)
Inmovilización , Articulación de la Rodilla , Fuerza Muscular , Músculo Esquelético , Entrenamiento de Fuerza , Torque , Humanos , Masculino , Femenino , Fuerza Muscular/fisiología , Entrenamiento de Fuerza/métodos , Articulación de la Rodilla/fisiología , Adulto , Músculo Esquelético/fisiología , Adulto Joven , Contracción Isométrica , Músculo Cuádriceps/fisiología , Recuperación de la Función , Factores Sexuales , Caracteres Sexuales
10.
Brain Connect ; 13(9): 521-527, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37522578

RESUMEN

Background/Purpose: To examine the influence of interpulse interval duration on knee extensor corticospinal excitability. Methods: Seventeen college-aged males and females participated in a single laboratory visit, during which 25 single transcranial magnetic stimulation pulses were delivered to the motor cortex with interpulse intervals of 5, 10, 15, and 20 sec. Surface electromyographic signals were detected from the dominant vastus lateralis and rectus femoris. Motor evoked potential amplitude was compared across the four conditions. Results: For the vastus lateralis, the Friedman test indicated significant differences among conditions (chi-squared [3] = 7.80, p = 0.050); however, there were no pairwise differences (p ≥ 0.094) and small effect sizes (d ≤ 0.269). For the rectus femoris, the Friedman test results showed no significant differences among conditions (chi-squared [3] = 2.44, p = 0.487). Across all muscles and conditions, low intraclass correlation coefficients and high standard errors of measurement were suggestive of poor reliability. Conclusion: Unlike resting hand muscles, interpulse interval duration has little influence on corticospinal excitability for the knee extensors during active contractions.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Masculino , Femenino , Humanos , Adulto Joven , Estimulación Magnética Transcraneal/métodos , Reproducibilidad de los Resultados , Encéfalo , Rodilla/fisiología
11.
Brain Sci ; 13(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38137083

RESUMEN

Both motor imagery and resistance-training enhance motor function and corticospinal excitability. We tested the hypothesis that young participants with significant resistance-training experience would show heightened corticospinal excitability during a single session of motor imagery training. Fifty-six participants (mean ± SD age = 22 ± 2 years) were divided into resistance-trained and untrained groups. Forty-one upper-body resistance trained (21 males, 20 females; mean ± SD relative one repetition maximum bench press = 0.922 ± 0.317 kg/kg) and 15 untrained (4 males, 11 females; mean ± SD relative one repetition maximum bench press = 0.566 ± 0.175 kg/kg) participants visited the laboratory on three separate occasions. The first visit served as the familiarization session. During visits 2 and 3, participants engaged in a hand/wrist motor imagery protocol or rested quietly (control condition) in a randomized order. Before and after the interventions, single-pulse transcranial magnetic stimulation (TMS) over the motor cortex was used to measure resting motor-evoked potential amplitude of the first dorsal interosseous muscle. Our main finding was that motor imagery acutely increased corticospinal excitability by ~64% (marginal means pre = 784.1 µV, post = 1246.6 µV; p < 0.001, d = 0.487). However, there was no evidence that the increase in corticospinal excitability was influenced by resistance-training experience. We suspect that our results may have been influenced by the specific nature of the motor imagery task. Our findings have important implications for motor imagery prescription and suggest that motor imagery training may be equally beneficial for both resistance-trained and untrained populations. This study was prospectively registered at ClinicalTrials.gov (Identifier: NCT03889548).

12.
Appl Physiol Nutr Metab ; 47(8): 839-846, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35436421

RESUMEN

Echo intensity may associate with indicators of skeletal muscle quality, but investigators often use different methodological approaches that may alter echo intensity when acquiring B-mode ultrasound images. We examined the influence of image depth and gain settings on the interpretation of echo intensity. Thirty-six college-aged males and females participated. Ultrasound images of the vastus lateralis were captured in the sagittal plane. Images were captured at depths of 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, and 7.0 cm and gain settings of 50 and 60 dB in random order. For both gain settings, echo intensity values were similar between 4.0 and 6.0 cm. At a gain of 50 dB, 7.0 cm demonstrated greater values than all other depths. At a gain of 60 dB, 7.0 cm displayed greater values compared to all other depths, but 3.0 cm displayed lower echo intensity values than other depths. Echo intensity was substantially higher when using a gain of 60 dB compared to 50 dB (mean difference ≥ 21.7 arbitrary units, d ≥ 3.47). When planning investigations in new research areas, researchers should carefully consider their study-specific image depth. Echo intensity values are stable between depths of 4.0 and 6.0 cm, suggesting that changing image depth may not be problematic. Image gain must be kept constant. Novelty: Optimal approaches for B-mode ultrasound image acquisition of skeletal muscles remain unclear. Echo intensity is similar between depths of 4.0 and 6.0 cm, regardless of image gain. Investigators should seek to utilize a constant depth setting, but small deviations may be acceptable.


Asunto(s)
Músculo Esquelético , Músculo Cuádriceps , Femenino , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Músculo Cuádriceps/diagnóstico por imagen , Ultrasonografía/métodos , Adulto Joven
13.
Sports (Basel) ; 10(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36355819

RESUMEN

Low back pain (LBP) is a leading cause of disability. The use of deadlift-based assessments in assessing LBP is becoming common in clinical settings, but these concepts have not been well studied. We sought to compare force and muscle excitation during isometric deadlifts in participants suffering from LBP versus asymptomatic controls. We also compared these outcomes for conventional versus hexagonal barbells. Sixteen adults with mild-to-moderate, acute, non-specific LBP and 19 controls performed maximal, isometric deadlifts while standing on a force plate using conventional and hexagonal barbells. Surface electromyographic signals were recorded from the upper trapezius, external oblique, erector spinae, vastus lateralis, and biceps femoris. Normalized peak force and peak rate of force development were similar for those with acute, non-specific LBP and controls. Surface electromyographic excitation was not different between groups, but was higher with the hexagonal barbell for the vastus lateralis and upper trapezius. Both groups felt equally safe and confident. In summary, the presence of acute, non-specific LBP did not impair peak and rapid force or muscle excitation. Hexagonal barbells may optimize knee extensor and trapezius activation. Deadlift-based force assessments appear safe and may be useful in the assessment of functional strength in patients with acute, non-specific LBP.

14.
J Funct Morphol Kinesiol ; 6(4)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34842750

RESUMEN

The amount of experience with ultrasonography may influence measurement outcomes while images are acquired or analyzed. The purpose of this study was to identify the interrater reliability of ultrasound image acquisition and image analysis between experienced and novice sonographers and image analysts, respectively. Following a brief hands-on training session (2 h), the experienced and novice sonographers and analysts independently performed image acquisition and analyses on the biceps brachii, vastus lateralis, and medial gastrocnemius in a sample of healthy participants (n = 17). Test-retest reliability statistics were computed for muscle thickness (transverse and sagittal planes), muscle cross-sectional area, echo intensity and subcutaneous adipose tissue thickness. The results show that image analysis experience generally has a greater impact on measurement outcomes than image acquisition experience. Interrater reliability for measurements of muscle size during image acquisition was generally good-excellent (ICC2,1: 0.82-0.98), but poor-moderate for echo intensity (ICC2,1: 0.43-0.77). For image analyses, interrater reliability for measurements of muscle size for the vastus lateralis and biceps brachii was poor-moderate (ICC2,1: 0.48-0.70), but excellent for echo intensity (ICC2,1: 0.90-0.98). Our findings have important implications for laboratories and clinics where members possess varying levels of ultrasound experience.

15.
Physiol Meas ; 40(9): 095002, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31470424

RESUMEN

Advances in surface electromyographic (EMG) signal decomposition allow researchers to analyze data for 20-50 motor units per contraction. To simplify interpretation, some investigators rely on group mean analysis of the mean firing rate versus recruitment threshold relationship, but it is unclear if this association is linear. OBJECTIVE: To determine whether this relationship is strongest when analyzed via linear, quadratic, or cubic regression. APPROACH: Twenty-one men (mean ± SD age = 24 ± 4 years) and 16 women (21 ± 2 years) performed isometric contractions of the knee extensors at 50% of maximal force while bipolar surface EMG signals were recorded from the vastus lateralis. A decomposition algorithm was used to calculate the mean firing rate and recruitment threshold of each motor unit at accuracy levels ranging from 90.0%-93.0%. Polynominal regression was used to determine if each relationship was best fit with a linear, quadratic, or cubic model. We examined individual contractions and grouped data. MAIN RESULTS: Overall, 80% of the relationships were best fit with a linear model. Quadratic and cubic relationships were more appropriate for 16% and 2% of the contractions, respectively. Selecting varying accuracy levels within a range of 90.0%-93.0% had little influence on whether a given dataset was best fit with a linear, quadratic, or cubic model. Grouping of data provided different relationships than otherwise found on a contraction-by-contraction basis. SIGNIFICANCE: The mean firing rate versus recruitment threshold relationship is typically best fit with a linear model. These relationships should be examined on an individual contraction basis.


Asunto(s)
Modelos Neurológicos , Neuronas Motoras/citología , Electromiografía , Femenino , Humanos , Modelos Lineales , Masculino , Contracción Muscular/fisiología , Procesamiento de Señales Asistido por Computador , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA