Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell ; 77(2): 324-337.e8, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31704182

RESUMEN

A major challenge in biology is to understand how complex gene expression patterns are encoded in the genome. While transcriptional enhancers have been studied extensively, few transcriptional silencers have been identified, and they remain poorly understood. Here, we used a novel strategy to screen hundreds of sequences for tissue-specific silencer activity in whole Drosophila embryos. Almost all of the transcriptional silencers that we identified were also active enhancers in other cellular contexts. These elements are bound by more transcription factors than non-silencers. A subset of these silencers forms long-range contacts with promoters. Deletion of a silencer caused derepression of its target gene. Our results challenge the common practice of treating enhancers and silencers as separate classes of regulatory elements and suggest the possibility that thousands or more bifunctional CRMs remain to be discovered in Drosophila and 104-105 in humans.


Asunto(s)
Drosophila/genética , Elementos de Facilitación Genéticos/genética , Elementos Silenciadores Transcripcionales/genética , Transcripción Genética/genética , Animales , Animales Modificados Genéticamente/genética , Masculino
2.
Nucleic Acids Res ; 51(2): 574-594, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36537216

RESUMEN

The lysine acetyltransferase KAT6A (MOZ, MYST3) belongs to the MYST family of chromatin regulators, facilitating histone acetylation. Dysregulation of KAT6A has been implicated in developmental syndromes and the onset of acute myeloid leukemia (AML). Previous work suggests that KAT6A is recruited to its genomic targets by a combinatorial function of histone binding PHD fingers, transcription factors and chromatin binding interaction partners. Here, we demonstrate that a winged helix (WH) domain at the very N-terminus of KAT6A specifically interacts with unmethylated CpG motifs. This DNA binding function leads to the association of KAT6A with unmethylated CpG islands (CGIs) genome-wide. Mutation of the essential amino acids for DNA binding completely abrogates the enrichment of KAT6A at CGIs. In contrast, deletion of a second WH domain or the histone tail binding PHD fingers only subtly influences the binding of KAT6A to CGIs. Overexpression of a KAT6A WH1 mutant has a dominant negative effect on H3K9 histone acetylation, which is comparable to the effects upon overexpression of a KAT6A HAT domain mutant. Taken together, our work revealed a previously unrecognized chromatin recruitment mechanism of KAT6A, offering a new perspective on the role of KAT6A in gene regulation and human diseases.


Asunto(s)
Cromatina , Histona Acetiltransferasas , Histonas , Humanos , Cromatina/genética , Islas de CpG/genética , ADN , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Acetilación
3.
Trends Genet ; 37(6): 514-527, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33712326

RESUMEN

Silencers are regulatory DNA elements that reduce transcription from their target promoters; they are the repressive counterparts of enhancers. Although discovered decades ago, and despite evidence of their importance in development and disease, silencers have been much less studied than enhancers. Recently, however, a series of papers have reported systematic studies of silencers in various model systems. Silencers are often bifunctional regulatory elements that can also act as enhancers, depending on cellular context, and are enriched for expression quantitative trait loci (eQTLs) and disease-associated variants. There is not yet evidence of a 'silencer chromatin signature', in the distribution of histone modifications or associated proteins, that is common to all silencers; instead, silencers may fall into various subclasses, acting by distinct (and possibly overlapping) mechanisms.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Cromatina/genética , Evolución Molecular , Técnicas Genéticas , Humanos , Regiones Promotoras Genéticas
4.
Genome Res ; 30(5): 736-748, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32424069

RESUMEN

Deciphering the interplay between chromatin accessibility and transcription factor (TF) binding is fundamental to understanding transcriptional regulation, control of cellular states, and the establishment of new phenotypes. Recent genome-wide chromatin accessibility profiling studies have provided catalogs of putative open regions, where TFs can recognize their motifs and regulate gene expression programs. Here, we present motif enrichment in differential elements of accessibility (MEDEA), a computational tool that analyzes high-throughput chromatin accessibility genomic data to identify cell-type-specific accessible regions and lineage-specific motifs associated with TF binding therein. To benchmark MEDEA, we used a panel of reference cell lines profiled by ENCODE and curated by the ENCODE Project Consortium for the ENCODE-DREAM Challenge. By comparing results with RNA-seq data, ChIP-seq peaks, and DNase-seq footprints, we show that MEDEA improves the detection of motifs associated with known lineage specifiers. We then applied MEDEA to 610 ENCODE DNase-seq data sets, where it revealed significant motifs even when absolute enrichment was low and where it identified novel regulators, such as NRF1 in kidney development. Finally, we show that MEDEA performs well on both bulk and single-cell ATAC-seq data. MEDEA is publicly available as part of our Glossary-GENRE suite for motif enrichment analysis.


Asunto(s)
Cromatina/metabolismo , Elementos Reguladores de la Transcripción , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/metabolismo , Sitios de Unión , Línea Celular , Linaje de la Célula/genética , ADN/química , Humanos , Motivos de Nucleótidos
5.
Development ; 143(2): 306-17, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657774

RESUMEN

Cardiogenesis involves the coordinated regulation of multiple biological processes by a finite set of transcription factors (TFs). Here, we show that the Forkhead TFs Checkpoint suppressor homologue (CHES-1-like) and Jumeau (Jumu), which govern cardiac progenitor cell divisions by regulating Polo kinase activity, play an additional, mutually redundant role in specifying the cardiac mesoderm (CM) as eliminating the functions of both Forkhead genes in the same Drosophila embryo results in defective hearts with missing hemisegments. This process is mediated by the Forkhead TFs regulating the fibroblast growth factor receptor Heartless (Htl) and the Wnt receptor Frizzled (Fz): CHES-1-like and jumu exhibit synergistic genetic interactions with htl and fz in CM specification, thereby implying that they function through the same genetic pathways, and transcriptionally activate the expression of both receptor-encoding genes. Furthermore, ectopic overexpression of either htl or fz in the mesoderm partially rescues the defective CM specification phenotype in embryos lacking both Forkhead genes. Together, these data emphasize the functional redundancy that leads to robustness in the cardiac progenitor specification process, and illustrate the pleiotropic functions of Forkhead TFs in different aspects of cardiogenesis.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Miocardio/citología , Miocardio/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Drosophila , Proteínas de Drosophila , Factores de Crecimiento de Fibroblastos/genética , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Interferencia de ARN , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
6.
Nucleic Acids Res ; 43(Database issue): D117-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378322

RESUMEN

The Universal PBM Resource for Oligonucleotide Binding Evaluation (UniPROBE) serves as a convenient source of information on published data generated using universal protein-binding microarray (PBM) technology, which provides in vitro data about the relative DNA-binding preferences of transcription factors for all possible sequence variants of a length k ('k-mers'). The database displays important information about the proteins and displays their DNA-binding specificity data in terms of k-mers, position weight matrices and graphical sequence logos. This update to the database documents the growth of UniPROBE since the last update 4 years ago, and introduces a variety of new features and tools, including a new streamlined pipeline that facilitates data deposition by universal PBM data generators in the research community, a tool that generates putative nonbinding (i.e. negative control) DNA sequences for one or more proteins and novel motifs obtained by analyzing the PBM data using the BEEML-PBM algorithm for motif inference. The UniPROBE database is available at http://uniprobe.org.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Bases de Datos de Proteínas , Análisis por Matrices de Proteínas , Factores de Transcripción/metabolismo , Algoritmos , ADN/química , ADN/metabolismo , Internet , Motivos de Nucleótidos , Programas Informáticos
7.
Nat Methods ; 10(8): 774-80, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23852450

RESUMEN

Transcriptional enhancers are a primary mechanism by which tissue-specific gene expression is achieved. Despite the importance of these regulatory elements in development, responses to environmental stresses and disease, testing enhancer activity in animals remains tedious, with a minority of enhancers having been characterized. Here we describe 'enhancer-FACS-seq' (eFS) for highly parallel identification of active, tissue-specific enhancers in Drosophila melanogaster embryos. Analysis of enhancers identified by eFS as being active in mesodermal tissues revealed enriched DNA binding site motifs of known and putative, previously uncharacterized mesodermal transcription factors. Naive Bayes classifiers using transcription factor binding site motifs accurately predicted mesodermal enhancer activity. Application of eFS to other cell types and organisms should accelerate the cataloging of enhancers and understanding how transcriptional regulation is encoded in them.


Asunto(s)
Secuencias de Aminoácidos , Drosophila melanogaster/genética , Citometría de Flujo/métodos , Regulación del Desarrollo de la Expresión Génica , Animales , Sitios de Unión , Drosophila melanogaster/embriología , Elementos de Facilitación Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Mesodermo , Análisis de Secuencia de ADN
8.
Proc Natl Acad Sci U S A ; 110(30): 12349-54, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23836653

RESUMEN

The evolution of transcriptional regulatory networks entails the expansion and diversification of transcription factor (TF) families. The forkhead family of TFs, defined by a highly conserved winged helix DNA-binding domain (DBD), has diverged into dozens of subfamilies in animals, fungi, and related protists. We have used a combination of maximum-likelihood phylogenetic inference and independent, comprehensive functional assays of DNA-binding capacity to explore the evolution of DNA-binding specificity within the forkhead family. We present converging evidence that similar alternative sequence preferences have arisen repeatedly and independently in the course of forkhead evolution. The vast majority of DNA-binding specificity changes we observed are not explained by alterations in the known DNA-contacting amino acid residues conferring specificity for canonical forkhead binding sites. Intriguingly, we have found forkhead DBDs that retain the ability to bind very specifically to two completely distinct DNA sequence motifs. We propose an alternate specificity-determining mechanism whereby conformational rearrangements of the DBD broaden the spectrum of sequence motifs that a TF can recognize. DNA-binding bispecificity suggests a previously undescribed source of modularity and flexibility in gene regulation and may play an important role in the evolution of transcriptional regulatory networks.


Asunto(s)
Evolución Biológica , ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Acanthamoeba castellanii/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/clasificación , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
9.
Development ; 139(6): 1164-74, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22296846

RESUMEN

A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide mRNA expression profiling to identify genes that are activated or repressed by the muscle HD TFs Slouch (Slou) and Muscle segment homeobox (Msh). Next, we used protein-binding microarrays to define the sequences that are bound by Slou, Msh and other HD TFs that have mesodermal expression. These studies revealed that a large class of HDs, including Slou and Msh, predominantly recognize TAAT core sequences but that each HD also binds to unique sites that deviate from this canonical motif. To understand better the regulatory specificity of an individual FC identity HD, we evaluated the functions of atypical binding sites that are preferentially bound by Slou relative to other HDs within muscle enhancers that are either activated or repressed by this TF. These studies showed that Slou regulates the activities of particular myoblast enhancers through Slou-preferred sequences, whereas swapping these sequences for sites that are capable of binding to multiple HD family members does not support the normal regulatory functions of Slou. Moreover, atypical Slou-binding sites are overrepresented in putative enhancers associated with additional Slou-responsive FC genes. Collectively, these studies provide new insights into the roles of individual HD TFs in determining cellular identity, and suggest that the diversity of HD binding preferences can confer regulatory specificity.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Músculos/embriología , Mioblastos/fisiología , Animales , Secuencia de Bases , Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/biosíntesis , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(50): 20768-73, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23184988

RESUMEN

Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis-regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Genoma de los Insectos , Desarrollo de Músculos/genética , Factores Reguladores Miogénicos/genética , Animales , Animales Modificados Genéticamente , Inteligencia Artificial , Secuencia de Bases , Sitios de Unión/genética , ADN/genética , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Datos de Secuencia Molecular , Mioblastos/citología , Mioblastos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Biología de Sistemas , Transcriptoma
11.
Am J Hum Genet ; 89(1): 44-55, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21703590

RESUMEN

Genetic mutations responsible for oblique facial clefts (ObFC), a unique class of facial malformations, are largely unknown. We show that loss-of-function mutations in SPECC1L are pathogenic for this human developmental disorder and that SPECC1L is a critical organizer of vertebrate facial morphogenesis. During murine embryogenesis, Specc1l is expressed in cell populations of the developing facial primordial, which proliferate and fuse to form the face. In zebrafish, knockdown of a SPECC1L homolog produces a faceless phenotype with loss of jaw and facial structures, and knockdown in Drosophila phenocopies mutants in the integrin signaling pathway that exhibit cell-migration and -adhesion defects. Furthermore, in mammalian cells, SPECC1L colocalizes with both tubulin and actin, and its deficiency results in defective actin-cytoskeleton reorganization, as well as abnormal cell adhesion and migration. Collectively, these data demonstrate that SPECC1L functions in actin-cytoskeleton reorganization and is required for proper facial morphogenesis.


Asunto(s)
Fisura del Paladar/genética , Disostosis Craneofacial/genética , Proteínas del Citoesqueleto/deficiencia , Anomalías del Ojo/genética , Anomalías Maxilofaciales/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Actinas/genética , Animales , Adhesión Celular , Línea Celular , Movimiento Celular/genética , Proliferación Celular , Fisura del Paladar/patología , Disostosis Craneofacial/patología , Drosophila/genética , Drosophila/metabolismo , Anomalías del Ojo/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Hibridación in Situ , Masculino , Anomalías Maxilofaciales/patología , Microtúbulos/genética , Microtúbulos/metabolismo , Mutación , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Tubulina (Proteína)/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
12.
Nat Commun ; 15(1): 3110, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600112

RESUMEN

Homeodomains (HDs) are the second largest class of DNA binding domains (DBDs) among eukaryotic sequence-specific transcription factors (TFs) and are the TF structural class with the largest number of disease-associated mutations in the Human Gene Mutation Database (HGMD). Despite numerous structural studies and large-scale analyses of HD DNA binding specificity, HD-DNA recognition is still not fully understood. Here, we analyze 92 human HD mutants, including disease-associated variants and variants of uncertain significance (VUS), for their effects on DNA binding activity. Many of the variants alter DNA binding affinity and/or specificity. Detailed biochemical analysis and structural modeling identifies 14 previously unknown specificity-determining positions, 5 of which do not contact DNA. The same missense substitution at analogous positions within different HDs often exhibits different effects on DNA binding activity. Variant effect prediction tools perform moderately well in distinguishing variants with altered DNA binding affinity, but poorly in identifying those with altered binding specificity. Our results highlight the need for biochemical assays of TF coding variants and prioritize dozens of variants for further investigations into their pathogenicity and the development of clinical diagnostics and precision therapies.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Humanos , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , ADN/metabolismo , Mutación , Modelos Moleculares
13.
Nucleic Acids Res ; 39(11): 4553-63, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21335608

RESUMEN

Numerous efforts are underway to determine gene regulatory networks that describe physical relationships between transcription factors (TFs) and their target DNA sequences. Members of paralogous TF families typically recognize similar DNA sequences. Knowledge of the molecular determinants of protein-DNA recognition by paralogous TFs is of central importance for understanding how small differences in DNA specificities can dictate target gene selection. Previously, we determined the in vitro DNA binding specificities of 19 Caenorhabditis elegans basic helix-loop-helix (bHLH) dimers using protein binding microarrays. These TFs bind E-box (CANNTG) and E-box-like sequences. Here, we combine these data with logics, bHLH-DNA co-crystal structures and computational modeling to infer which bHLH monomer can interact with which CAN E-box half-site and we identify a critical residue in the protein that dictates this specificity. Validation experiments using mutant bHLH proteins provide support for our inferences. Our study provides insights into the mechanisms of DNA recognition by bHLH dimers as well as a blueprint for system-level studies of the DNA binding determinants of other TF families in different model organisms and humans.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , ADN/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Biología Computacional/métodos , ADN/metabolismo , Dimerización , Modelos Moleculares , Unión Proteica
14.
Dis Model Mech ; 16(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815464

RESUMEN

Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Vía de Señalización Wnt , Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia/genética , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patología , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Neoplasias Renales/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
15.
Genome Biol ; 22(1): 348, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930411

RESUMEN

Understanding the contributions of transcription factor DNA binding sites to transcriptional enhancers is a significant challenge. We developed Quantitative enhancer-FACS-Seq for highly parallel quantification of enhancer activities from a genomically integrated reporter in Drosophila melanogaster embryos. We investigate the contributions of the DNA binding motifs of four poorly characterized TFs to the activities of twelve embryonic mesodermal enhancers. We measure quantitative changes in enhancer activity and discover a range of epistatic interactions among the motifs, both synergistic and alleviating. We find that understanding the regulatory consequences of TF binding motifs requires that they be investigated in combination across enhancer contexts.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Elementos de Facilitación Genéticos , Factores de Transcripción/genética , Transcripción Genética , Animales , Sitios de Unión , ADN/metabolismo , Proteínas de Unión al ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Factores de Transcripción/metabolismo
16.
PLoS Genet ; 2(2): e16, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16482229

RESUMEN

An important but largely unmet challenge in understanding the mechanisms that govern the formation of specific organs is to decipher the complex and dynamic genetic programs exhibited by the diversity of cell types within the tissue of interest. Here, we use an integrated genetic, genomic, and computational strategy to comprehensively determine the molecular identities of distinct myoblast subpopulations within the Drosophila embryonic mesoderm at the time that cell fates are initially specified. A compendium of gene expression profiles was generated for primary mesodermal cells purified by flow cytometry from appropriately staged wild-type embryos and from 12 genotypes in which myogenesis was selectively and predictably perturbed. A statistical meta-analysis of these pooled datasets--based on expected trends in gene expression and on the relative contribution of each genotype to the detection of known muscle genes--provisionally assigned hundreds of differentially expressed genes to particular myoblast subtypes. Whole embryo in situ hybridizations were then used to validate the majority of these predictions, thereby enabling true-positive detection rates to be estimated for the microarray data. This combined analysis reveals that myoblasts exhibit much greater gene expression heterogeneity and overall complexity than was previously appreciated. Moreover, it implicates the involvement of large numbers of uncharacterized, differentially expressed genes in myogenic specification and subsequent morphogenesis. These findings also underscore a requirement for considerable regulatory specificity for generating diverse myoblast identities. Finally, to illustrate how the developmental functions of newly identified myoblast genes can be efficiently surveyed, a rapid RNA interference assay that can be scored in living embryos was developed and applied to selected genes. This integrated strategy for examining embryonic gene expression and function provides a substantially expanded framework for further studies of this model developmental system.


Asunto(s)
Biología Computacional/métodos , Regulación del Desarrollo de la Expresión Génica , Técnicas Genéticas , Mioblastos/fisiología , Animales , Drosophila melanogaster , Regulación de la Expresión Génica , Genotipo , Hibridación in Situ , Mesodermo/metabolismo , Desarrollo de Músculos , Músculos/metabolismo , Mioblastos/metabolismo , Interferencia de ARN
17.
Cell Rep ; 27(3): 955-970.e7, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995488

RESUMEN

Combinatorial interactions among transcription factors (TFs) play essential roles in generating gene expression specificity and diversity in metazoans. Using yeast 2-hybrid (Y2H) assays on nearly all sequence-specific Drosophila TFs, we identified 1,983 protein-protein interactions (PPIs), more than doubling the number of currently known PPIs among Drosophila TFs. For quality assessment, we validated a subset of our interactions using MITOMI and bimolecular fluorescence complementation assays. We combined our interactome with prior PPI data to generate an integrated Drosophila TF-TF binary interaction network. Our analysis of ChIP-seq data, integrating PPI and gene expression information, uncovered different modes by which interacting TFs are recruited to DNA. We further demonstrate the utility of our Drosophila interactome in shedding light on human TF-TF interactions. This study reveals how TFs interact to bind regulatory elements in vivo and serves as a resource of Drosophila TF-TF binary PPIs for understanding tissue-specific gene regulation.


Asunto(s)
Drosophila melanogaster/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , ADN/química , ADN/metabolismo , Regulación de la Expresión Génica , Microscopía Fluorescente , Mapas de Interacción de Proteínas/genética , Elementos Reguladores de la Transcripción , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
18.
PLoS Comput Biol ; 2(5): e53, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16733548

RESUMEN

While combinatorial models of transcriptional regulation can be inferred for metazoan systems from a priori biological knowledge, validation requires extensive and time-consuming experimental work. Thus, there is a need for computational methods that can evaluate hypothesized cis regulatory codes before the difficult task of experimental verification is undertaken. We have developed a novel computational framework (termed "CodeFinder") that integrates transcription factor binding site and gene expression information to evaluate whether a hypothesized transcriptional regulatory model (TRM; i.e., a set of co-regulating transcription factors) is likely to target a given set of co-expressed genes. Our basic approach is to simultaneously predict cis regulatory modules (CRMs) associated with a given gene set and quantify the enrichment for combinatorial subsets of transcription factor binding site motifs comprising the hypothesized TRM within these predicted CRMs. As a model system, we have examined a TRM experimentally demonstrated to drive the expression of two genes in a sub-population of cells in the developing Drosophila mesoderm, the somatic muscle founder cells. This TRM was previously hypothesized to be a general mode of regulation for genes expressed in this cell population. In contrast, the present analyses suggest that a modified form of this cis regulatory code applies to only a subset of founder cell genes, those whose gene expression responds to specific genetic perturbations in a similar manner to the gene on which the original model was based. We have confirmed this hypothesis by experimentally discovering six (out of 12 tested) new CRMs driving expression in the embryonic mesoderm, four of which drive expression in founder cells.


Asunto(s)
Biología Computacional/métodos , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Músculos/embriología , Secuencias Reguladoras de Ácidos Nucleicos , Secuencias de Aminoácidos , Animales , Análisis por Conglomerados , Mesodermo/metabolismo , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Alas de Animales/embriología
19.
Science ; 351(6280): 1450-1454, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27013732

RESUMEN

Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN/metabolismo , Regulación de la Expresión Génica , Enfermedades Genéticas Congénitas/genética , Factores de Transcripción/genética , Secuencia de Bases , Sitios de Unión , Simulación por Computador , Proteínas de Unión al ADN/metabolismo , Exoma/genética , Variación Genética , Genoma Humano , Humanos , Mutación , Polimorfismo de Nucleótido Simple , Análisis por Matrices de Proteínas , Unión Proteica , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo
20.
PLoS One ; 8(7): e69385, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922708

RESUMEN

Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I-HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks directing mesoderm development.


Asunto(s)
ADN/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mesodermo/citología , Animales , Secuencia de Bases , Sitios de Unión , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Embrión no Mamífero/citología , Elementos de Facilitación Genéticos , Genes de Insecto , Proteínas de Homeodominio/genética , Mesodermo/metabolismo , Mutagénesis/genética , Especificidad de Órganos/genética , Unión Proteica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA