Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mar Pollut Bull ; 197: 115668, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922751

RESUMEN

Aquaculture productivity in coastal lagoons is endangered by a complex interplay of anthropogenic and environmental factors, amplified by the effects of climate change in these sensitive areas. To reach a more comprehensive assessment of farming sites quality, a quantitative Weight of Evidence approach (QWoE) is applied for the first time to data collected at four Manila clam (R. philippinarum) farming sites in the Venice lagoon (Italy). This included sediment quality, chemical bioaccumulation, and biological responses. Results revealed a greater hazard for sites closer to the open sea. In these areas, the combination of sediment characteristics and a higher frequency of salinity and temperature stress could explain the alterations measured at a transcriptional and biomarker level. The findings demonstrate that a QWoE approach that integrates multiple sources of evidence should also include physicochemical conditions in order to better understand the impacts of human activities and other stressors on clam aquaculture productivity.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Humanos , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Granjas , Italia
2.
NanoImpact ; 25: 100373, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559879

RESUMEN

The assessment of the safety of nano-biomedical products for patients is an essential prerequisite for their market authorization. However, it is also required to ensure the safety of the workers who may be unintentionally exposed to the nano-biomaterials (NBMs) in these medical applications during their synthesis, formulation into products and end-of-life processing and also of the medical professionals (e.g., nurses, doctors, dentists) using the products for treating patients. There is only a handful of workplace risk assessments focussing on NBMs used in medical applications. Our goal is to contribute to increasing the knowledge in this area by assessing the occupational risks of magnetite (Fe3O4) nanoparticles coated with PLGA-b-PEG-COOH used as contrast agent in magnetic resonance imaging (MRI) by applying the software-based Decision Support System (DSS) which was developed in the EU H2020 project BIORIMA. The occupational risk assessment was performed according to regulatory requirements and using state-of-the-art models for hazard and exposure assessment, which are part of the DSS. Exposure scenarios for each life cycle stage were developed using data from literature, inputs from partnering industries and results of a questionnaire distributed to healthcare professionals, i.e., physicians, nurses, technicians working with contrast agents for MRI. Exposure concentrations were obtained either from predictive exposure models or monitoring campaigns designed specifically for this study. Derived No-Effect Levels (DNELs) were calculated by means of the APROBA tool starting from in vivo hazard data from literature. The exposure estimates/measurements and the DNELs were used to perform probabilistic risk characterisation for the formulated exposure scenarios, including uncertainty analysis. The obtained results revealed negligible risks for workers along the life cycle of magnetite NBMs used as contrast agent for the diagnosis of tumour cells in all exposure scenarios except in one when risk is considered acceptable after the adoption of specific risk management measures. The study also demonstrated the added value of using the BIORIMA DSS for quantification and communication of occupational risks of nano-biomedical applications and the associated uncertainties.


Asunto(s)
Medios de Contraste , Óxido Ferrosoférrico , Medios de Contraste/efectos adversos , Humanos , Exposición Profesional , Medición de Riesgo/métodos , Gestión de Riesgos , Lugar de Trabajo
3.
Nanotoxicology ; 16(4): 484-499, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35913849

RESUMEN

Due to the unique characteristics of nanomaterials (NM) there has been an increase in their use in nanomedicines and innovative medical devices (MD). Although large numbers of NMs have now been developed, comprehensive safety investigations are still lacking. Current gaps in understanding the potential mechanisms of NM-induced toxicity can make it challenging to determine the safety testing necessary to support inclusion of NMs in MD applications. This article provides guidance for implementation of pre-clinical tailored safety assessment strategies with the aim to increase the translation of NMs from bench development to clinical use. Integrated Approaches to Testing and Assessment (IATAs) are a key tool in developing these strategies. IATAs follow an iterative approach to answer a defined question in a specific regulatory context to guide the gathering of relevant information for safety assessment, including existing experimental data, integrated with in silico model predictions where available and appropriate, and/or experimental procedures and protocols for generating new data to fill gaps. This allows NM developers to work toward current guidelines and regulations, while taking NM specific considerations into account. Here, an example IATA for NMs with potential for direct blood contact was developed for the assessment of haemocompatibility. This example IATA brings together the current guidelines for NM safety assessment within a framework that can be used to guide information and data gathering for the safety assessment of intravenously injected NMs. Additionally, the decision framework underpinning this IATA has the potential to be adapted to other testing needs and regulatory contexts.


Asunto(s)
Nanoestructuras , Pruebas de Toxicidad , Simulación por Computador , Nanoestructuras/toxicidad , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos
4.
Front Bioeng Biotechnol ; 10: 987650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312555

RESUMEN

The use of silver nanoparticles (NPs) in medical devices is constantly increasing due to their excellent antimicrobial properties. In wound dressings, Ag NPs are commonly added in large excess to exert a long-term and constant antimicrobial effect, provoking an instantaneous release of Ag ions during their use or the persistence of unused NPs in the wound dressing that can cause a release of Ag during the end-of-life of the product. For this reason, a Safe-by-Design procedure has been developed to reduce potential environmental risks while optimizing functionality and costs of wound dressings containing Ag NPs. The SbD procedure is based on ad-hoc criteria (e.g., mechanical strength, antibacterial effect, leaching of Ag from the product immersed in environmental media) and permits to identify the best one among five pre-market alternatives. A ranking of the SbD alternatives was obtained and the safer solution was selected based on the selected SbD criteria. The SbD framework was also applied to commercial wound dressings to compare the SbD alternatives with products already on the market. The iterative procedure permitted to exclude one of the alternatives (based on its low mechanical strength) and proved to be an effective approach that can be replicated to support the ranking, prioritisation, and selection of the most promising options early in the innovation process of nano-enabled medical devices as well as to encourage the production of medical devices safer for the environment.

5.
Sci Total Environ ; 628-629: 919-937, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045581

RESUMEN

There is high confidence that the anthropogenic increase of atmospheric greenhouse gases (GHGs) is causing modifications in the Earth's climate. Coastal waterbodies such as estuaries, bays and lagoons are among those most affected by the ongoing changes in climate. Being located at the land-sea interface, such waterbodies are subjected to the combined changes in the physical-chemical processes of atmosphere, upstream land and coastal waters. Particularly, climate change is expected to alter phytoplankton communities by changing their environmental drivers (especially climate-related), thus exacerbating the symptoms of eutrophication events, such as hypoxia, harmful algal blooms (HAB) and loss of habitat. A better understanding of the links between climate-related drivers and phytoplankton is therefore necessary for projecting climate change impacts on aquatic ecosystems. Here we present the case study of the Zero river basin in Italy, one of the main contributors of freshwater and nutrient to the salt-marsh Palude di Cona, a coastal waterbody belonging to the lagoon of Venice. To project the impacts of climate change on freshwater inputs, nutrient loadings and their effects on the phytoplankton community of the receiving waterbody, we formulated and applied an integrated modelling approach made of: climate simulations derived by coupling a General Circulation Model (GCM) and a Regional Climate Model (RCM) under alternative emission scenarios, the hydrological model Soil and Water Assessment Tool (SWAT) and the ecological model AQUATOX. Climate projections point out an increase of precipitations in the winter period and a decrease in the summer months, while temperature shows a significant increase over the whole year. Water discharge and nutrient loads simulated by SWAT show a tendency to increase (decrease) in the winter (summer) period. AQUATOX projects changes in the concentration of nutrients in the salt-marsh Palude di Cona, and variations in the biomass and species of the phytoplankton community.

6.
Sci Total Environ ; 568: 770-784, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27169730

RESUMEN

MERLIN-Expo is a library of models that was developed in the frame of the FP7 EU project 4FUN in order to provide an integrated assessment tool for state-of-the-art exposure assessment for environment, biota and humans, allowing the detection of scientific uncertainties at each step of the exposure process. This paper describes the main features of the MERLIN-Expo tool. The main challenges in exposure modelling that MERLIN-Expo has tackled are: (i) the integration of multimedia (MM) models simulating the fate of chemicals in environmental media, and of physiologically based pharmacokinetic (PBPK) models simulating the fate of chemicals in human body. MERLIN-Expo thus allows the determination of internal effective chemical concentrations; (ii) the incorporation of a set of functionalities for uncertainty/sensitivity analysis, from screening to variance-based approaches. The availability of such tools for uncertainty and sensitivity analysis aimed to facilitate the incorporation of such issues in future decision making; (iii) the integration of human and wildlife biota targets with common fate modelling in the environment. MERLIN-Expo is composed of a library of fate models dedicated to non biological receptor media (surface waters, soils, outdoor air), biological media of concern for humans (several cultivated crops, mammals, milk, fish), as well as wildlife biota (primary producers in rivers, invertebrates, fish) and humans. These models can be linked together to create flexible scenarios relevant for both human and wildlife biota exposure. Standardized documentation for each model and training material were prepared to support an accurate use of the tool by end-users. One of the objectives of the 4FUN project was also to increase the confidence in the applicability of the MERLIN-Expo tool through targeted realistic case studies. In particular, we aimed at demonstrating the feasibility of building complex realistic exposure scenarios and the accuracy of the modelling predictions through a comparison with actual measurements.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Contaminantes Ambientales/farmacocinética , Modelos Biológicos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/farmacocinética , Animales , Biota/fisiología , Productos Agrícolas/química , Exposición a Riesgos Ambientales/estadística & datos numéricos , Europa (Continente) , Agua Dulce/química , Humanos , Leche/química , Multimedia , Valor Predictivo de las Pruebas , Medición de Riesgo , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA