Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Genes Dev ; 38(3-4): 151-167, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38453480

RESUMEN

By satisfying bioenergetic demands, generating biomass, and providing metabolites serving as cofactors for chromatin modifiers, metabolism regulates adult stem cell biology. Here, we report that a branch of glycolysis, the serine biosynthesis pathway (SBP), is activated in regenerating muscle stem cells (MuSCs). Gene inactivation and metabolomics revealed that Psat1, one of the three SBP enzymes, controls MuSC activation and expansion of myogenic progenitors through production of the metabolite α-ketoglutarate (α-KG) and α-KG-generated glutamine. Psat1 ablation resulted in defective expansion of MuSCs and impaired regeneration. Psat1, α-KG, and glutamine were reduced in MuSCs of old mice. α-KG or glutamine re-established appropriate muscle regeneration of adult conditional Psat1 -/- mice and of old mice. These findings contribute insights into the metabolic role of Psat1 during muscle regeneration and suggest α-KG and glutamine as potential therapeutic interventions to ameliorate muscle regeneration during aging.


Asunto(s)
Células Madre Adultas , Ácidos Cetoglutáricos , Ratones , Animales , Ácidos Cetoglutáricos/metabolismo , Glutamina/metabolismo , Envejecimiento/fisiología , Músculos , Músculo Esquelético
2.
Physiol Rev ; 101(4): 1561-1607, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33733879

RESUMEN

The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.


Asunto(s)
Metabolismo Energético/fisiología , Músculo Estriado/metabolismo , Animales , Humanos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/fisiología , Células Musculares/metabolismo
3.
J Physiol ; 602(1): 113-128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018177

RESUMEN

Mitochondrial calcium concentration ([Ca2+ ]m ) plays an essential role in bioenergetics, and loss of [Ca2+ ]m homeostasis can trigger diseases and cell death in numerous cell types. Ca2+ uptake into mitochondria occurs via the mitochondrial Ca2+ uniporter (MCU), which is regulated by three mitochondrial Ca2+ uptake (MICU) proteins localized in the intermembrane space, MICU1, 2, and 3. We generated a mouse model of systemic MICU3 ablation and examined its physiological role in skeletal muscle. We found that loss of MICU3 led to impaired exercise capacity. When the muscles were directly stimulated there was a decrease in time to fatigue. MICU3 ablation significantly increased the maximal force of the KO muscle and altered fibre type composition with an increase in the ratio of type IIb (low oxidative capacity) to type IIa (high oxidative capacity) fibres. Furthermore, MICU3-KO mitochondria have reduced uptake of Ca2+ and increased phosphorylation of pyruvate dehydrogenase, indicating that KO animals contain less Ca2+ in their mitochondria. Skeletal muscle from MICU3-KO mice exhibited lower net oxidation of NADH during electrically stimulated muscle contraction compared with wild-type. These data demonstrate that MICU3 plays a role in skeletal muscle physiology by setting the proper threshold for mitochondrial Ca2+ uptake, which is important for matching energy demand and supply in muscle. KEY POINTS: Mitochondrial calcium uptake is an important regulator of bioenergetics and cell death and is regulated by the mitochondrial calcium uniporter (MCU) and three calcium sensitive regulatory proteins (MICU1, 2 and 3). Loss of MICU3 leads to impaired exercise capacity and decreased time to skeletal muscle fatigue. Skeletal muscle from MICU3-KO mice exhibits a net oxidation of NADH during electrically stimulated muscle contractions, suggesting that MICU3 plays a role in skeletal muscle physiology by matching energy demand and supply.


Asunto(s)
Calcio , Proteínas Mitocondriales , Ratones , Animales , Proteínas Mitocondriales/metabolismo , Calcio/metabolismo , Tolerancia al Ejercicio , NAD/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Músculo Esquelético/metabolismo , Calcio de la Dieta , Proteínas de Unión al Calcio/metabolismo
4.
J Physiol ; 602(5): 891-912, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429930

RESUMEN

Skeletal muscle cellular development requires the integrated assembly of mitochondria and other organelles adjacent to the sarcomere in support of muscle contractile performance. However, it remains unclear how interactions among organelles and with the sarcomere relates to the development of muscle cell function. Here, we combine 3D volume electron microscopy, proteomic analyses, and live cell functional imaging to investigate the postnatal reorganization of mitochondria-organelle interactions in skeletal muscle. We show that while mitochondrial networks are disorganized and loosely associated with the contractile apparatus at birth, contact sites among mitochondria, lipid droplets and the sarcoplasmic reticulum are highly abundant in neonatal muscles. The maturation process is characterized by a transition to highly organized mitochondrial networks wrapped tightly around the muscle sarcomere but also to less frequent interactions with both lipid droplets and the sarcoplasmic reticulum. Concomitantly, expression of proteins involved in mitochondria-organelle membrane contact sites decreases during postnatal development in tandem with a decrease in abundance of proteins associated with sarcomere assembly despite an overall increase in contractile protein abundance. Functionally, parallel measures of mitochondrial membrane potential, NADH redox status, and NADH flux within intact cells revealed that mitochondria in adult skeletal muscle fibres maintain a more activated electron transport chain compared with neonatal muscle mitochondria. These data demonstrate a developmental redesign reflecting a shift from muscle cell assembly and frequent inter-organelle communication toward a muscle fibre with mitochondrial structure, interactions, composition and function specialized to support contractile function. KEY POINTS: Mitochondrial network organization is remodelled during skeletal muscle postnatal development. The mitochondrial outer membrane is in frequent contact with other organelles at birth and transitions to more close associations with the contractile apparatus in mature muscles. Mitochondrial energy metabolism becomes more activated during postnatal development. Understanding the developmental redesign process within skeletal muscle cells may help pinpoint specific areas of deficit in muscles with developmental disorders.


Asunto(s)
NAD , Proteómica , Humanos , Adulto , Recién Nacido , NAD/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias Musculares/metabolismo , Gotas Lipídicas/metabolismo
5.
J Physiol ; 602(9): 1967-1986, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564214

RESUMEN

Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.


Asunto(s)
Capilares , Mitocondrias Musculares , Músculo Esquelético , Sarcolema , Sarcolema/metabolismo , Sarcolema/ultraestructura , Sarcolema/fisiología , Animales , Capilares/fisiología , Capilares/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigación sanguínea , Ratones , Metabolismo Energético/fisiología , Masculino , Ratones Endogámicos C57BL , Potencial de la Membrana Mitocondrial/fisiología
6.
J Cell Physiol ; 239(4): e31204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38419397

RESUMEN

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.


Asunto(s)
Factor de Transcripción Activador 4 , Enfermedades Neurodegenerativas , Animales , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Lípidos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Neurodegenerativas/patología , Masculino , Ratones Endogámicos C57BL , Células Cultivadas , GTP Fosfohidrolasas/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 323(3): H499-H512, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35867709

RESUMEN

Myocardial ischemia has long-lasting negative impacts on cardiomyocyte mitochondrial ATP production. However, the location(s) of damage to the oxidative phosphorylation pathway responsible for altered mitochondrial function is unclear. Mitochondrial reactive oxygen species (ROS) production increases following ischemia, but the specific factors controlling this increase are unknown. To determine how ischemia affects the mitochondrial energy conversion cascade and ROS production, mitochondrial driving forces [redox potential and membrane potential (ΔΨ)] were measured at resting, intermediate, and maximal respiration rates in mitochondria isolated from rat hearts after 60 min of control flow (control) or no-flow ischemia (ischemia). The effective activities of the dehydrogenase enzymes, the electron transport chain (ETC), and ATP synthesis and transport were computed using the driving forces and flux. Ischemia lowered maximal mitochondrial respiration rates and diminished the responsiveness of respiration to both redox potential and ΔΨ. Ischemia decreased the activities of every component of the oxidative phosphorylation pathway: the dehydrogenase enzymes, the ETC, and ATP synthesis and transport. ROS production was linearly related to driving force down the ETC; however, ischemia mitochondria demonstrated a greater driving force down the ETC and higher ROS production. Overall, results indicate that ischemia ubiquitously damages the oxidative phosphorylation pathway, reduces mitochondrial sensitivity to driving forces, and augments the propensity for electrons to leak from the ETC. These findings underscore that strategies to improve mitochondrial function following ischemia must target the entire mitochondrial energy conversion cascade.NEW & NOTEWORTHY This integrative analysis is the first to assess how myocardial ischemia alters the mitochondrial driving forces and the degree to which individual segments of the mitochondrial energy transduction pathway contribute to diminished function following ischemia. This investigation demonstrates that increased reactive oxygen species production following ischemia is related to a lower effective activity of the electron transport chain and a greater driving force down the electron transport chain.


Asunto(s)
Isquemia Miocárdica , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Animales , Isquemia/metabolismo , Mitocondrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Oxidorreductasas/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
8.
J Physiol ; 599(3): 863-888, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32358865

RESUMEN

Mitochondrial structures were probably observed microscopically in the 1840s, but the idea of oxidative phosphorylation (OXPHOS) within mitochondria did not appear until the 1930s. The foundation for research into energetics arose from Meyerhof's experiments on oxidation of lactate in isolated muscles recovering from electrical contractions in an O2 atmosphere. Today, we know that mitochondria are actually reticula and that the energy released from electron pairs being passed along the electron transport chain from NADH to O2 generates a membrane potential and pH gradient of protons that can enter the molecular machine of ATP synthase to resynthesize ATP. Lactate stands at the crossroads of glycolytic and oxidative energy metabolism. Based on reported research and our own modelling in silico, we contend that lactate is not directly oxidized in the mitochondrial matrix. Instead, the interim glycolytic products (pyruvate and NADH) are held in cytosolic equilibrium with the products of the lactate dehydrogenase (LDH) reaction and the intermediates of the malate-aspartate and glycerol 3-phosphate shuttles. This equilibrium supplies the glycolytic products to the mitochondrial matrix for OXPHOS. LDH in the mitochondrial matrix is not compatible with the cytoplasmic/matrix redox gradient; its presence would drain matrix reducing power and substantially dissipate the proton motive force. OXPHOS requires O2 as the final electron acceptor, but O2 supply is sufficient in most situations, including exercise and often acute illness. Recent studies suggest that atmospheric normoxia may constitute a cellular hyperoxia in mitochondrial disease. As research proceeds appropriate oxygenation levels should be carefully considered.


Asunto(s)
Mitocondrias , NAD , Metabolismo Energético , Glucólisis , Mitocondrias/metabolismo , NAD/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa
9.
Nature ; 523(7562): 617-20, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26223627

RESUMEN

Intracellular energy distribution has attracted much interest and has been proposed to occur in skeletal muscle via metabolite-facilitated diffusion; however, genetic evidence suggests that facilitated diffusion is not critical for normal function. We hypothesized that mitochondrial structure minimizes metabolite diffusion distances in skeletal muscle. Here we demonstrate a mitochondrial reticulum providing a conductive pathway for energy distribution, in the form of the proton-motive force, throughout the mouse skeletal muscle cell. Within this reticulum, we find proteins associated with mitochondrial proton-motive force production preferentially in the cell periphery and proteins that use the proton-motive force for ATP production in the cell interior near contractile and transport ATPases. Furthermore, we show a rapid, coordinated depolarization of the membrane potential component of the proton-motive force throughout the cell in response to spatially controlled uncoupling of the cell interior. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for skeletal muscle energy distribution.


Asunto(s)
Metabolismo Energético , Mitocondrias Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Difusión , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Fuerza Protón-Motriz
11.
J Physiol ; 597(10): 2707-2727, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30919448

RESUMEN

KEY POINTS: Muscle mitochondrial networks changed from a longitudinal, fibre parallel orientation to a perpendicular configuration during postnatal development. Mitochondrial dynamics, mitophagy and calcium uptake proteins were abundant during early postnatal development. Mitochondrial biogenesis and oxidative phosphorylation proteins were upregulated throughout muscle development. Postnatal muscle mitochondrial network formation is accompanied by a change in protein expression profile from mitochondria designed for co-ordinated cellular assembly to mitochondria highly specialized for cellular energy metabolism. ABSTRACT: Striated muscle mitochondria form connected networks capable of rapid cellular energy distribution. However, the mitochondrial reticulum is not formed at birth and the mechanisms driving network development remain unclear. In the present study, we aimed to establish the network formation timecourse and protein expression profile during postnatal development of the murine muscle mitochondrial reticulum. Two-photon microscopy was used to observe mitochondrial network orientation in tibialis anterior (TA) muscles of live mice at postnatal days (P) 1, 7, 14, 21 and 42, respectively. All muscle fibres maintained a longitudinal, fibre parallel mitochondrial network orientation early in development (P1-7). Mixed networks were most common at P14 but, by P21, almost all fibres had developed the perpendicular mitochondrial orientation observed in mature, glycolytic fibres. Tandem mass tag proteomics were then applied to examine changes in 6869 protein abundances in developing TA muscles. Mitochondrial proteins increased by 32% from P1 to P42. In addition, both nuclear- and mitochondrial-DNA encoded oxidative phosphorylation (OxPhos) components were increased during development, whereas OxPhos assembly factors decreased. Although mitochondrial dynamics and mitophagy were induced at P1-7, mitochondrial biogenesis was enhanced after P14. Moreover, calcium signalling proteins and the mitochondrial calcium uniporter had the highest expression early in postnatal development. In conclusion, mitochondrial networks transform from a fibre parallel to perpendicular orientation during the second and third weeks after birth in murine glycolytic skeletal muscle. This structural transition is accompanied by a change in protein expression profile from mitochondria designed for co-ordinated cellular assembly to mitochondria highly specialized for cellular energy metabolism.


Asunto(s)
Mitocondrias Musculares/fisiología , Dinámicas Mitocondriales/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/crecimiento & desarrollo , Envejecimiento , Animales , Animales Recién Nacidos , Calcineurina/metabolismo , Calcio/metabolismo , Señalización del Calcio , Calmodulina/genética , Calmodulina/metabolismo , Calpaína/genética , Calpaína/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Regulación hacia Arriba
12.
J Physiol ; 597(22): 5411-5428, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31490555

RESUMEN

KEY POINTS: We developed a novel metabolic imaging approach that provides direct measures of the rate of mitochondrial energy conversion with single-cell and subcellular resolution by evaluating NADH autofluorescence kinetics during the mitochondrial redox after cyanide experiment (mitoRACE). Measures of mitochondrial NADH flux by mitoRACE are sensitive to physiological and pharmacological perturbations in vivo. Metabolic imaging with mitoRACE provides a highly adaptable platform for evaluating mitochondrial function in vivo and in single cells with potential for broad applications in the study of energy metabolism. ABSTRACT: Mitochondria play a critical role in numerous cell types and diseases, and structure and function of mitochondria can vary greatly among cells or within different regions of the same cell. However, there are currently limited methodologies that provide direct assessments of mitochondrial function in vivo, and contemporary measures of mitochondrial energy conversion lack the spatial resolution necessary to address cellular and subcellular heterogeneity. Here, we describe a novel metabolic imaging approach that provides direct measures of mitochondrial energy conversion with single-cell and subcellular resolution by evaluating NADH autofluorescence kinetics during the mitochondrial redox after cyanide experiment (mitoRACE). MitoRACE measures the rate of NADH flux through the steady-state mitochondrial NADH pool by rapidly inhibiting mitochondrial energetic flux, resulting in an immediate, linear increase in NADH fluorescence proportional to the steady-state NADH flux rate, thereby providing a direct measure of mitochondrial NADH flux. The experiments presented here demonstrate the sensitivity of this technique to detect physiological and pharmacological changes in mitochondrial flux within tissues of living animals and reveal the unique capability of this technique to evaluate mitochondrial function with single-cell and subcellular resolution in different cell types in vivo and in cell culture. Furthermore, we highlight the potential applications of mitoRACE by showing that within single neurons, mitochondria in neurites have higher energetic flux rates than mitochondria in the cell body. Metabolic imaging with mitoRACE provides a highly adaptable platform for evaluating mitochondrial function in vivo and in single cells, with potential for broad applications in the study of energy metabolism.


Asunto(s)
Cianuros/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Animales , Metabolismo Energético/fisiología , Fluorescencia , Cinética , Masculino , Ratones Endogámicos C57BL , Oxidación-Reducción
13.
Am J Physiol Heart Circ Physiol ; 314(4): H704-H715, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29127235

RESUMEN

The left ventricular working, crystalloid-perfused heart is used extensively to evaluate basic cardiac function, pathophysiology, and pharmacology. Crystalloid-perfused hearts may be limited by oxygen delivery, as adding oxygen carriers increases myoglobin oxygenation and improves myocardial function. However, whether decreased myoglobin oxygen saturation impacts oxidative phosphorylation (OxPhos) is unresolved, since myoglobin has a much lower affinity for oxygen than cytochrome c oxidase (COX). In the present study, a laboratory-based synthesis of an affordable perfluorocarbon (PFC) emulsion was developed to increase perfusate oxygen carrying capacity without impeding optical absorbance assessments. In left ventricular working hearts, along with conventional measurements of cardiac function and metabolic rate, myoglobin oxygenation and cytochrome redox state were monitored using a novel transmural illumination approach. Hearts were perfused with Krebs-Henseleit (KH) or KH supplemented with PFC, increasing perfusate oxygen carrying capacity by 3.6-fold. In KH-perfused hearts, myoglobin was deoxygenated, consistent with cytoplasmic hypoxia, and the mitochondrial cytochromes, including COX, exhibited a high reduction state, consistent with OxPhos hypoxia. PFC perfusate increased aortic output from 76 ± 6 to 142 ± 4 ml/min and increased oxygen consumption while also increasing myoglobin oxygenation and oxidizing the mitochondrial cytochromes. These results are consistent with limited delivery of oxygen to OxPhos resulting in an adapted lower cardiac performance with KH. Consistent with this, PFCs increased myocardial oxygenation, and cardiac work was higher over a wider range of perfusate Po2. In summary, heart mitochondria are limited by oxygen delivery with KH; supplementation of KH with PFC reverses mitochondrial hypoxia and improves cardiac performance, creating a more physiological tissue oxygen delivery. NEW & NOTEWORTHY Optical absorbance spectroscopy of intrinsic chromophores reveals that the commonly used crystalloid-perfused working heart is oxygen limited for oxidative phosphorylation and associated cardiac work. Oxygen-carrying perfluorocarbons increase myocardial oxygen delivery and improve cardiac function, providing a more physiological mitochondrial redox state and emphasizing cardiac work is modulated by myocardial oxygen delivery.


Asunto(s)
Soluciones Cristaloides/farmacología , Fluorocarburos/farmacología , Corazón/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Oxígeno/metabolismo , Perfusión/métodos , Función Ventricular Izquierda/efectos de los fármacos , Animales , Soluciones Cristaloides/síntesis química , Citocromos c/metabolismo , Emulsiones , Fluorocarburos/síntesis química , Glucosa/farmacología , Corazón/fisiología , Preparación de Corazón Aislado , Mitocondrias Cardíacas/metabolismo , Mioglobina/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Conejos , Trometamina/farmacología
14.
Biochim Biophys Acta ; 1857(8): 1284-1289, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26921810

RESUMEN

Within the mitochondrial reticulum of skeletal muscle, the I-Band segments (IBS) traverse the cell and form a contiguous matrix with the mitochondrial segments at the periphery (PS) of the cell. A tight electrical coupling via the matrix between the PS and IBS has been demonstrated. In addition, oxidative phosphorylation complexes that generate the proton motive force (PMF) are preferentially located in the PS, while Complex V, which utilizes the PMF, is primarily located along the IBS. This has led to the hypothesis that PS can support the production of ATP in the IBS by maintaining the potential energy available to produce ATP deep in the muscle cell via conduction of the PMF down the IBS. However, the mechanism of transmitting the PMF down the IBS is poorly understood. This theoretical study was undertaken to establish the physical limits governing IBS conduction as well as potential mechanisms for balancing the protons entering the matrix along the IBS with the ejection of protons in the PS. The IBS was modeled as a 300 nm diameter, water-filled tube, with an insulated circumferential wall. Two mechanisms were considered to drive ion transport along the IBS: the electrical potential and/or concentration gradients between the PS to the end of the IBS. The magnitude of the flux was estimated from the maximum ATP production rate for skeletal muscle. The major transport ions in consideration were H(+), Na(+), and K(+) using diffusion coefficients from the literature. The simulations were run using COMSOL Multiphysics simulator. These simulations suggest conduction along the IBS via H(+) alone is unlikely requiring un-physiological gradients, while Na(+) or K(+) could carry the current with minor gradients in concentration or electrical potential along the IBS. The majority of conduction down the IBS is likely dependent on these abundant ions; however, this presents a question as to how H(+) is recycled from the matrix of the IBS to the PS for active extrusion. We propose that the abundant cation-proton antiporter in skeletal muscle mitochondria operates in opposite directions in the IBS and PS to permit local recycling of H(+) at each site driven by cooperative gradients in H(+) and Na(+)/K(+) which favor H(+) entry in the PS and H(+) efflux in the IBS. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Mitocondrias Musculares/metabolismo , Modelos Biológicos , Fosforilación Oxidativa , Protones , Animales , Cationes Monovalentes , Simulación por Computador , Análisis de Elementos Finitos , Concentración de Iones de Hidrógeno , Transporte Iónico , Cinética , Ratones , Mitocondrias Musculares/ultraestructura , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Potasio/metabolismo , Fuerza Protón-Motriz , Sodio/metabolismo
16.
J Microsc ; 260(2): 180-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26224257

RESUMEN

This paper investigates a postprocessing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modelling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to subvolumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional (3D) spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images.


Asunto(s)
Microscopía Fluorescente , Microvasos/ultraestructura , Algoritmos , Animales , Artefactos , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Intravital/métodos , Ratones , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Modelos Teóricos , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/ultraestructura , Fantasmas de Imagen , Fotones , Reproducibilidad de los Resultados
17.
Microcirculation ; 21(2): 131-47, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25279425

RESUMEN

OBJECTIVE: To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. METHODS: 3D volumes of in vivo murine TA muscles were imaged by MPM. Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of Mb-facilitated diffusion was examined in Mb KO mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. RESULTS: MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by Mb KO. GLUT4 did not preferentially localize to embedded capillaries. CONCLUSIONS: Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to PV regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria.


Asunto(s)
Capilares/metabolismo , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oxígeno/metabolismo , Sarcolema/metabolismo , Animales , Transporte Biológico Activo/fisiología , Transportador de Glucosa de Tipo 4/metabolismo , Ratones , Ratones Noqueados , Microscopía por Video , Mitocondrias Musculares/genética
18.
J Microsc ; 253(2): 83-92, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24251437

RESUMEN

We describe a compact, non-contact design for a total emission detection (c-TED) system for intra-vital multiphoton imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), whereas murine skeletal muscle and rat kidney showed gains of over two and just under twofold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a twofold gain throughout the entire volume of an intact embryo (approximately 150 µm deep). Direct measurement of bleaching rates confirmed that the lower laser powers, enabled by greater light collection efficiency, yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multiphoton imaging methods is discussed.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Embrión no Mamífero/anatomía & histología , Riñón/anatomía & histología , Rayos Láser , Lípidos/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/anatomía & histología , Fotoblanqueo , Ratas , Ratas Sprague-Dawley , Relación Señal-Ruido , Pez Cebra/anatomía & histología
19.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38168206

RESUMEN

Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear. Mitochondrial aging is associated with decreased mitochondrial capacity, so we sought to investigate how aging affects mitochondrial structure and potential age-related regulators. Specifically, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging requires further elucidation. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorous in vitro and in vivo exercise regimen during aging. Across 5 human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria we less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.

20.
Biochemistry ; 52(16): 2793-809, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23547908

RESUMEN

Calcium is believed to regulate mitochondrial oxidative phosphorylation, thereby contributing to the maintenance of cellular energy homeostasis. Skeletal muscle, with an energy conversion dynamic range of up to 100-fold, is an extreme case for evaluating the cellular balance of ATP production and consumption. This study examined the role of Ca(2+) in the entire oxidative phosphorylation reaction network in isolated skeletal muscle mitochondria and attempted to extrapolate these results back to the muscle, in vivo. Kinetic analysis was conducted to evaluate the dose-response effect of Ca(2+) on the maximal velocity of oxidative phosphorylation (V(maxO)) and the ADP affinity. Force-flow analysis evaluated the interplay between energetic driving forces and flux to determine the conductance, or effective activity, of individual steps within oxidative phosphorylation. Measured driving forces [extramitochondrial phosphorylation potential (ΔG(ATP)), membrane potential, and redox states of NADH and cytochromes b(H), b(L), c(1), c, and a,a(3)] were compared with flux (oxygen consumption) at 37 °C; 840 nM Ca(2+) generated an ~2-fold increase in V(maxO) with no change in ADP affinity (~43 µM). Force-flow analysis revealed that Ca(2+) activation of V(maxO) was distributed throughout the oxidative phosphorylation reaction sequence. Specifically, Ca(2+) increased the conductance of Complex IV (2.3-fold), Complexes I and III (2.2-fold), ATP production/transport (2.4-fold), and fuel transport/dehydrogenases (1.7-fold). These data support the notion that Ca(2+) activates the entire muscle oxidative phosphorylation cascade, while extrapolation of these data to the exercising muscle predicts a significant role of Ca(2+) in maintaining cellular energy homeostasis.


Asunto(s)
Calcio/metabolismo , Mitocondrias Musculares/metabolismo , Fosforilación Oxidativa , Adenosina Difosfato/metabolismo , Animales , Calcio/farmacología , Respiración de la Célula , Citocromos/metabolismo , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Cinética , Potencial de la Membrana Mitocondrial , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Porcinos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA