Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 59(6): 998-1010, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26365379

RESUMEN

The ATR replication checkpoint ensures that stalled forks remain stable when replisome movement is impeded. Using an improved iPOND protocol combined with SILAC mass spectrometry, we characterized human replisome dynamics in response to fork stalling. Our data provide a quantitative picture of the replisome and replication stress response proteomes in 32 experimental conditions. Importantly, rather than stabilize the replisome, the checkpoint prevents two distinct types of fork collapse. Unsupervised hierarchical clustering of protein abundance on nascent DNA is sufficient to identify protein complexes and place newly identified replisome-associated proteins into functional pathways. As an example, we demonstrate that ZNF644 complexes with the G9a/GLP methyltransferase at replication forks and is needed to prevent replication-associated DNA damage. Our data reveal how the replication checkpoint preserves genome integrity, provide insights into the mechanism of action of ATR inhibitors, and will be a useful resource for replication, DNA repair, and chromatin investigators.


Asunto(s)
Replicación del ADN , Puntos de Control de la Fase S del Ciclo Celular , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleasas/metabolismo , Estabilidad de Enzimas , Células HEK293 , Humanos , Factores de Transcripción/metabolismo
2.
Genes Dev ; 27(14): 1610-23, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23873943

RESUMEN

The DNA damage response kinase ataxia telangiectasia and Rad3-related (ATR) coordinates much of the cellular response to replication stress. The exact mechanisms by which ATR regulates DNA synthesis in conditions of replication stress are largely unknown, but this activity is critical for the viability and proliferation of cancer cells, making ATR a potential therapeutic target. Here we use selective ATR inhibitors to demonstrate that acute inhibition of ATR kinase activity yields rapid cell lethality, disrupts the timing of replication initiation, slows replication elongation, and induces fork collapse. We define the mechanism of this fork collapse, which includes SLX4-dependent cleavage yielding double-strand breaks and CtIP-dependent resection generating excess single-stranded template and nascent DNA strands. Our data suggest that the DNA substrates of these nucleases are generated at least in part by the SMARCAL1 DNA translocase. Properly regulated SMARCAL1 promotes stalled fork repair and restart; however, unregulated SMARCAL1 contributes to fork collapse when ATR is inactivated in both mammalian and Xenopus systems. ATR phosphorylates SMARCAL1 on S652, thereby limiting its fork regression activities and preventing aberrant fork processing. Thus, phosphorylation of SMARCAL1 is one mechanism by which ATR prevents fork collapse, promotes the completion of DNA replication, and maintains genome integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/genética , Activación Enzimática , Humanos , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Xenopus
3.
Proc Natl Acad Sci U S A ; 112(48): 14864-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26578802

RESUMEN

The SMARCAL1 (SWI/SNF related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) DNA translocase is one of several related enzymes, including ZRANB3 (zinc finger, RAN-binding domain containing 3) and HLTF (helicase-like transcription factor), that are recruited to stalled replication forks to promote repair and restart replication. These enzymes can perform similar biochemical reactions such as fork reversal; however, genetic studies indicate they must have unique cellular activities. Here, we present data showing that SMARCAL1 has an important function at telomeres, which present an endogenous source of replication stress. SMARCAL1-deficient cells accumulate telomere-associated DNA damage and have greatly elevated levels of extrachromosomal telomere DNA (C-circles). Although these telomere phenotypes are often found in tumor cells using the alternative lengthening of telomeres (ALT) pathway for telomere elongation, SMARCAL1 deficiency does not yield other ALT phenotypes such as elevated telomere recombination. The activity of SMARCAL1 at telomeres can be separated from its genome-maintenance activity in bulk chromosomal replication because it does not require interaction with replication protein A. Finally, this telomere-maintenance function is not shared by ZRANB3 or HLTF. Our results provide the first identification, to our knowledge, of an endogenous source of replication stress that requires SMARCAL1 for resolution and define differences between members of this class of replication fork-repair enzymes.


Asunto(s)
Cromosomas Humanos/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Homeostasis del Telómero/fisiología , Telómero/metabolismo , Animales , Cromosomas Humanos/genética , Daño del ADN/fisiología , ADN Helicasas/genética , Células HeLa , Humanos , Ratones , Recombinación Genética/fisiología , Telómero/genética
4.
Genes Dev ; 23(20): 2405-14, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19793861

RESUMEN

Mutations in SMARCAL1 (HARP) cause Schimke immunoosseous dysplasia (SIOD). The mechanistic basis for this disease is unknown. Using functional genomic screens, we identified SMARCAL1 as a genome maintenance protein. Silencing and overexpression of SMARCAL1 leads to activation of the DNA damage response during S phase in the absence of any genotoxic agent. SMARCAL1 contains a Replication protein A (RPA)-binding motif similar to that found in the replication stress response protein TIPIN (Timeless-Interacting Protein), which is both necessary and sufficient to target SMARCAL1 to stalled replication forks. RPA binding is critical for the cellular function of SMARCAL1; however, it is not necessary for the annealing helicase activity of SMARCAL1 in vitro. An SIOD-associated SMARCAL1 mutant fails to prevent replication-associated DNA damage from accumulating in cells in which endogenous SMARCAL1 is silenced. Ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) phosphorylate SMARCAL1 in response to replication stress. Loss of SMARCAL1 activity causes increased RPA loading onto chromatin and persistent RPA phosphorylation after a transient exposure to replication stress. Furthermore, SMARCAL1-deficient cells are hypersensitive to replication stress agents. Thus, SMARCAL1 is a replication stress response protein, and the pleiotropic phenotypes of SIOD are at least partly due to defects in genome maintenance during DNA replication.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Inestabilidad Genómica , Línea Celular , Cromatina , Regulación de la Expresión Génica , Células HeLa , Humanos , Mutación , Osteocondrodisplasias/genética , Osteocondrodisplasias/fisiopatología , Fosforilación , Unión Proteica , Proteína de Replicación A/metabolismo
5.
J Biol Chem ; 286(33): 28707-28714, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21705319

RESUMEN

The DNA damage response kinases ataxia telangiectasia-mutated (ATM), DNA-dependent protein kinase (DNA-PK), and ataxia telangiectasia-mutated and Rad3-related (ATR) signal through multiple pathways to promote genome maintenance. These related kinases share similar methods of regulation, including recruitment to specific nucleic acid structures and association with protein activators. ATM and DNA-PK also are regulated via phosphorylation, which provides a convenient biomarker for their activity. Whether phosphorylation regulates ATR is unknown. Here we identify ATR Thr-1989 as a DNA damage-regulated phosphorylation site. Selective inhibition of ATR prevents Thr-1989 phosphorylation, and phosphorylation requires ATR activation. Cells engineered to express only a non-phosphorylatable T1989A mutant exhibit a modest ATR functional defect. Our results suggest that, like ATM and DNA-PK, phosphorylation regulates ATR, and phospho-peptide specific antibodies to Thr-1989 provide a proximal marker of ATR activation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Treonina/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Daño del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/fisiología , Humanos , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Treonina/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
6.
Proc Natl Acad Sci U S A ; 106(46): 19304-9, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19889979

RESUMEN

The DNA damage response (DDR) has a critical role in maintaining genome integrity and serves as a barrier to tumorigenesis by promoting cell-cycle arrest, DNA repair, and apoptosis. The DDR is activated not only by genotoxic agents that induce DNA damage, but also during aberrant cell-division cycles caused by activated oncogenes and inactivated tumor suppressors. Here we use RNAi and cDNA overexpression screens in human cells to identify genes that, when deregulated, lead to activation of the DDR. The RNAi screen identified 73 genes that, when silenced in at least two cell types, cause DDR activation. Silencing several of these genes also caused an increased frequency of micronuclei, a marker of genetically unstable cells. The cDNA screen identified 97 genes that when overexpressed induce DDR activation in the absence of any exogenous genotoxic agent, with an overrepresentation of genes linked to cancer. Secondary RNAi screens identified CDK2-interacting protein (CINP) as a cell-cycle checkpoint protein. CINP interacts with ATR-interacting protein and regulates ATR-dependent signaling, resistance to replication stress, and G2 checkpoint integrity.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Genoma Humano , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras/genética , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Genómica , Células HeLa , Humanos , Técnicas del Sistema de Dos Híbridos
7.
Mol Cell Biol ; 27(9): 3367-77, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17339343

RESUMEN

The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in ATRIP orthologs was identified by biochemical mapping of the RPA binding site in combination with nuclear magnetic resonance, mutagenesis, and computational modeling. Mutations in the CRD of the Saccharomyces cerevisiae ATRIP ortholog Ddc2 disrupt the Ddc2-RPA interaction, prevent proper localization of Ddc2 to DNA breaks, sensitize yeast to DNA-damaging agents, and partially compromise checkpoint signaling. These data demonstrate that the CRD is critical for localization and optimal DNA damage responses. However, the stimulation of ATR kinase activity by binding of topoisomerase binding protein 1 (TopBP1) to ATRIP-ATR can occur independently of the interaction of ATRIP with RPA. Our results support the idea of a multistep model for ATR activation that requires separable localization and activation functions of ATRIP.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Exodesoxirribonucleasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Daño del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Humanos , Imagen por Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología Estructural de Proteína , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Nucleic Acids Res ; 32(14): 4400-10, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15316103

RESUMEN

Identification of genes required for segregation of chromosomes in meiosis (scm) is difficult because in most organisms high-fidelity chromosome segregation is essential to produce viable meiotic products. The biology of fission yeast Schizosaccharomyces pombe facilitates identification of such genes. Insertional mutagenesis was achieved by electroporation of linear ura4+ DNA into cells harboring a ura4 deletion. Approximately 1000 stable transformants were screened individually for the production of elevated frequencies of aneuploid spore colonies. Twenty-two candidates were subjected to a secondary screen for cytological defects. Five mutants exhibited significant levels of aberrant meiotic chromosome segregation, but were proficient for mating and completion of meiosis. Each mutant's phenotype cosegregated with its respective ura4+ transgene. The mutations were recessive and defined five complementation groups, revealing five distinct genes (scm1, scm2, scm3, scm4 and scm5). Southern blotting revealed single-site integration in each transformant, indicating that insertional mutagenesis is useful for generating single-locus scm mutations linked to a selectable marker. The transgene insertion points were refractory to analysis by inverse-PCR. Molecular and real-time PCR analyses revealed the presence of multiple, truncated copies of ura4+ at each integration site. Thus, electroporation-mediated insertional mutagenesis in S.pombe is preceded by exonucleolytic processing and concatomerization of the transforming DNA.


Asunto(s)
Segregación Cromosómica , Cromosomas Fúngicos , Mutagénesis Insercional/métodos , Schizosaccharomyces/genética , Genes Fúngicos , Meiosis , Mitosis , Mutación , Recombinación Genética , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Esporas Fúngicas/citología , Esporas Fúngicas/genética , Secuencias Repetidas en Tándem , Transformación Genética
9.
Nat Cell Biol ; 18(11): 1185-1195, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27723720

RESUMEN

The ATR checkpoint kinase coordinates cellular responses to DNA replication stress. Budding yeast contain three activators of Mec1 (the ATR orthologue); however, only TOPBP1 is known to activate ATR in vertebrates. We identified ETAA1 as a replication stress response protein in two proteomic screens. ETAA1-deficient cells accumulate double-strand breaks, sister chromatid exchanges, and other hallmarks of genome instability. They are also hypersensitive to replication stress and have increased frequencies of replication fork collapse. ETAA1 contains two RPA-interaction motifs that localize ETAA1 to stalled replication forks. It also interacts with several DNA damage response proteins including the BLM/TOP3α/RMI1/RMI2 and ATR/ATRIP complexes. It binds ATR/ATRIP directly using a motif with sequence similarity to the TOPBP1 ATR-activation domain; and like TOPBP1, ETAA1 acts as a direct ATR activator. ETAA1 functions in parallel to the TOPBP1/RAD9/HUS1/RAD1 pathway to regulate ATR and maintain genome stability. Thus, vertebrate cells contain at least two ATR-activating proteins.


Asunto(s)
Antígenos de Superficie/metabolismo , Replicación del ADN/genética , Inestabilidad Genómica/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Superficie/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Transducción de Señal/genética
10.
PLoS One ; 10(5): e0125482, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25965342

RESUMEN

The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Pirazinas/farmacología , Sulfonas/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN Polimerasa Dirigida por ADN , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Biblioteca de Genes , Células HCT116 , Humanos , Péptidos y Proteínas de Señalización Intracelular , ARN Interferente Pequeño/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
11.
PLoS One ; 8(5): e63149, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671665

RESUMEN

SMARCAL1 is an ATPase in the SNF2 family that functions at damaged replication forks to promote their stability and restart. It acts by translocating on DNA to catalyze DNA strand annealing, branch migration, and fork regression. Many SNF2 enzymes work as motor subunits of large protein complexes. To determine if SMARCAL1 is also a member of a protein complex and to further understand how it functions in the replication stress response, we used a proteomics approach to identify interacting proteins. In addition to the previously characterized interaction with replication protein A (RPA), we found that SMARCAL1 forms complexes with several additional proteins including DNA-PKcs and the WRN helicase. SMARCAL1 and WRN co-localize at stalled replication forks independently of one another. The SMARCAL1 interaction with WRN is indirect and is mediated by RPA acting as a scaffold. SMARCAL1 and WRN act independently to prevent MUS81 cleavage of the stalled fork. Biochemical experiments indicate that both catalyze fork regression with SMARCAL1 acting more efficiently and independently of WRN. These data suggest that RPA brings a complex of SMARCAL1 and WRN to stalled forks, but that they may act in different pathways to promote fork repair and restart.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Exodesoxirribonucleasas/metabolismo , RecQ Helicasas/metabolismo , Proteína de Replicación A/metabolismo , Línea Celular Tumoral , ADN/química , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Espectrometría de Masas , Conformación de Ácido Nucleico , Unión Proteica , Proteómica/métodos , RecQ Helicasas/genética , Proteína de Replicación A/genética , Fase S/genética , Helicasa del Síndrome de Werner
12.
Genes Dev ; 22(11): 1478-89, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18519640

RESUMEN

The ATR (ATM and Rad3-related) kinase and its regulatory partner ATRIP (ATR-interacting protein) coordinate checkpoint responses to DNA damage and replication stress. TopBP1 functions as a general activator of ATR. However, the mechanism by which TopBP1 activates ATR is unknown. Here, we show that ATRIP contains a TopBP1-interacting region that is necessary for the association of TopBP1 and ATR, for TopBP1-mediated activation of ATR, and for cells to survive and recover DNA synthesis following replication stress. We demonstrate that this region is functionally conserved in the Saccharomyces cerevisiae ATRIP ortholog Ddc2, suggesting a conserved mechanism of regulation. In addition, we identify a domain of ATR that is critical for its activation by TopBP1. Mutations of the ATR PRD (PIKK [phosphoinositide 3-kinase related kinase] Regulatory Domain) do not affect the basal kinase activity of ATR but prevent its activation. Cellular complementation experiments demonstrate that TopBP1-mediated ATR activation is required for checkpoint signaling and cellular viability. The PRDs of ATM and mTOR (mammalian target of rapamycin) were shown previously to regulate the activities of these kinases, and our data indicate that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) PRD is important for DNA-PKcs regulation. Therefore, divergent amino acid sequences within the PRD and a unique protein partner allow each of these PIK kinases to respond to distinct cellular events.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Línea Celular , Supervivencia Celular , Activación Enzimática , Humanos , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae , Transducción de Señal , Transfección
13.
Mol Cell Biol ; 28(24): 7345-53, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18936170

RESUMEN

ATR kinase activation requires the recruitment of the ATR-ATRIP and RAD9-HUS1-RAD1 (9-1-1) checkpoint complexes to sites of DNA damage or replication stress. Replication protein A (RPA) bound to single-stranded DNA is at least part of the molecular recognition element that recruits these checkpoint complexes. We have found that the basic cleft of the RPA70 N-terminal oligonucleotide-oligosaccharide fold (OB-fold) domain is a key determinant of checkpoint activation. This protein-protein interaction surface is able to bind several checkpoint proteins, including ATRIP, RAD9, and MRE11. RAD9 binding to RPA is mediated by an acidic peptide within the C-terminal RAD9 tail that has sequence similarity to the primary RPA-binding surface in the checkpoint recruitment domain (CRD) of ATRIP. Mutation of the RAD9 CRD impairs its localization to sites of DNA damage or replication stress without perturbing its ability to form the 9-1-1 complex or bind the ATR activator TopBP1. Disruption of the RAD9-RPA interaction also impairs ATR signaling to CHK1 and causes hypersensitivity to both DNA damage and replication stress. Thus, the basic cleft of the RPA70 N-terminal OB-fold domain binds multiple checkpoint proteins, including RAD9, to promote ATR signaling.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Línea Celular , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína de Replicación A/genética , Alineación de Secuencia
14.
Exp Cell Res ; 313(8): 1667-74, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17376433

RESUMEN

The ATM and ATR kinases function at the apex of checkpoint signaling pathways. These kinases share significant sequence similarity, phosphorylate many of the same substrates, and have overlapping roles in initiating cell cycle checkpoints. However, they sense DNA damage through distinct mechanisms. ATR primarily senses single stranded DNA (ssDNA) through its interaction with ATRIP, and ATM senses double strand breaks through its interaction with Nbs1. We determined that the N-terminus of ATR contains a domain that binds ATRIP. Attaching this domain to ATM allowed the fusion protein (ATM*) to bind ATRIP and associate with RPA-coated ssDNA. ATM* also gained the ability to localize efficiently to stalled replication forks as well as double strand breaks. Despite having normal kinase activity when tested in vitro and being phosphorylated on S1981 in vivo, ATM* is defective in checkpoint signaling and does not complement cellular deficiencies in either ATM or ATR. These data indicate that the N-terminus of ATR is sufficient to bind ATRIP and to promote localization to sites of replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Origen de Réplica , Proteína de Replicación A/metabolismo , Proteínas Supresoras de Tumor/genética
15.
Cell Chromosome ; 1(1): 1, 2002 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-12437782

RESUMEN

BACKGROUND: In most organisms proper reductional chromosome segregation during meiosis I is strongly correlated with the presence of crossover recombination structures (chiasmata); recombination deficient mutants lack crossovers and suffer meiosis I nondisjunction. We report that these functions are separable in the fission yeast Schizosaccharomyces pombe. RESULTS: Intron mapping and expression studies confirmed that Rec12 is a member of the Spo11/Top6A topoisomerase family required for the formation of meiotic dsDNA breaks and recombination. rec12-117, rec12-D15 (null), and rec12-Y98F (active site) mutants lacked most crossover recombination and chromosomes segregated abnormally to generate aneuploid meiotic products. Since S. pombe contains only three chromosome pairs, many of those aneuploid products were viable. The types of aberrant chromosome segregation were inferred from the inheritance patterns of centromere linked markers in diploid meiotic products. The rec12-117 and rec12-D15 mutants manifest segregation errors during both meiosis I and meiosis II. Remarkably, the rec12-Y98F (active site) mutant exhibited essentially normal meiosis I segregation patterns, but still exhibited meiosis II segregation errors. CONCLUSIONS: Rec12 is a 345 amino acid protein required for most crossover recombination and for chiasmatic segregation of chromosomes during meiosis I. Rec12 also participates in a backup distributive (achiasmatic) system of chromosome segregation during meiosis I. In addition, catalytically-active Rec12 mediates some signal that is required for faithful equational segregation of chromosomes during meiosis II.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA