RESUMEN
Optical transmitters typically require electrical pre-amplification using driver amplifiers to optimize the optical modulation depth. To enhance the detection sensitivity and optimize the overall link budget, equalization is required to compensate for undesired signal distortion induced by the transmitter. In this paper, we propose and demonstrate a novel optical equalization scheme using a silicon photonic micro-ring resonator (MRR)-based switching circuit for mitigating driver-amplifier-induced pulsewidth distortion. The switching circuit simultaneously functions as a spatial optical switch as well as a two-stage optical bandpass filter for optical equalization. The experimental results indicate a 4.5-dB detection sensitivity enhancement at a data rate of 12.5 Gbits/s. The proposed approach is robust to different levels of pulsewidth distortion without additional signal processing, and has possibilities to support higher data rates by adjusting the MRR parameters.
RESUMEN
Phase-modulated ring resonant switches are receiving increasing attention for monolithic Silicon photonic networks. Resilience to fabrication variations and operational tolerances are however required to create networks with sufficient connectivity and bandwidth. In this work we use the combination of vectorial optical-mode propagation and transfer matrix calculation to map fabrication-level feature size variation to the optical switch performance metrics for extinction ratio, bandwidth and power penalty. Fabrication tolerances may be relaxed considerably through the combination of moderate size directional couplers of up to 30 µm, moderate 400 GHz free spectral range resonator design and the use of fifth order resonance. High speed 10 Gb/s, wavelength-multiplex-compliant, optical signal routing is predicted with on-state power penalties of 0.2 dB - 0.7 dB and off-state signal extinctions of - 62 dB.
RESUMEN
We select the optimum design parameters for real-time optical OFDM transceivers running at 25 Gb/s and analyze power consumption and ASIC footprint for a variety of configurations based on synthesis for a 65nm standard-cell library. Experiments quantify the effects of modulation format and the number of IFFT/FFT points used in transceivers.
RESUMEN
We designed at the register-transfer-level digital signal processing (DSP) circuits for 21.8 Gb/s and 43.7 Gb/s QPSK- and 16-QAM-encoded optical orthogonal frequency division multiplexing (OFDM) transceivers, and carried out synthesis and simulations assessing performance, power consumption and chip area. The aim of the study is to determine the suitability of OFDM technology for low-cost optical interconnects. Power calculations based on synthesis for a 65 nm standard-cell library showed that the DSP components of the transceiver (FFTs, equalisation, (de)mapping and clipping/scaling circuits) consume 18.2 mW/Gb/s and 12.8 mW/Gb/s in the case of QPSK and 16-QAM respectively.
RESUMEN
We demonstrate a field programmable gate array (FPGA) based optical orthogonal frequency division multiplexing (OFDM) transmitter implementing real time digital signal processing at a sample rate of 21.4 GS/s. The QPSK-OFDM signal is generated using an 8 bit, 128 point inverse fast Fourier transform (IFFT) core, performing one transform per clock cycle at a clock speed of 167.2 MHz and can be deployed with either a direct-detection or a coherent receiver. The hardware design and the main digital signal processing functions are described, and we show that the main performance limitation is due to the low (4-bit) resolution of the digital-to-analog converter (DAC) and the 8-bit resolution of the IFFT core used. We analyze the back-to-back performance of the transmitter generating an 8.36 Gb/s optical single sideband (SSB) OFDM signal using digital up-conversion, suitable for direct-detection. Additionally, we use the device to transmit 8.36 Gb/s SSB OFDM signals over 200 km of uncompensated standard single mode fiber achieving an overall BER<10(-3).