Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Chem ; 94(12): 4930-4937, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35290737

RESUMEN

Available automated methods for peak detection in untargeted metabolomics suffer from poor precision. We present NeatMS, which uses machine learning based on a convoluted neural network to reduce the number and fraction of false peaks. NeatMS comes with a pre-trained model representing expert knowledge in the differentiation of true chemical signal from noise. Furthermore, it provides all necessary functions to easily train new models or improve existing ones by transfer learning. Thus, the tool improves peak curation and contributes to the robust and scalable analysis of large-scale experiments. We show how to integrate it into different liquid chromatography-mass spectrometry (LC-MS) analysis workflows, quantify its performance, and compare it to various other approaches. NeatMS software is available as open source on github under permissive MIT license and is also provided as easy-to-install PyPi and Bioconda packages.


Asunto(s)
Aprendizaje Profundo , Cromatografía Liquida/métodos , Metabolómica/métodos , Programas Informáticos , Espectrometría de Masas en Tándem/métodos
2.
Nucleic Acids Res ; 46(W1): W495-W502, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29718355

RESUMEN

Metabolism of an organism is composed of hundreds to thousands of interconnected biochemical reactions responding to environmental or genetic constraints. This metabolic network provides a rich knowledge to contextualize omics data and to elaborate hypotheses on metabolic modulations. Nevertheless, performing this kind of integrative analysis is challenging for end users with not sufficiently advanced computer skills since it requires the use of various tools and web servers. MetExplore offers an all-in-one online solution composed of interactive tools for metabolic network curation, network exploration and omics data analysis. In particular, it is possible to curate and annotate metabolic networks in a collaborative environment. The network exploration is also facilitated in MetExplore by a system of interactive tables connected to a powerful network visualization module. Finally, the contextualization of metabolic elements in the network and the calculation of over-representation statistics make it possible to interpret any kind of omics data. MetExplore is a sustainable project maintained since 2010 freely available at https://metexplore.toulouse.inra.fr/metexplore2/.


Asunto(s)
Agrobacterium/metabolismo , Difusión de la Información/métodos , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Programas Informáticos , Agrobacterium/genética , Gráficos por Computador , Genómica/métodos , Humanos , Internet , Metabolómica/métodos , Anotación de Secuencia Molecular , Proteómica/métodos , Saccharomyces cerevisiae/genética
3.
Bioinformatics ; 34(2): 312-313, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28968733

RESUMEN

SUMMARY: MetExploreViz is an open source web component that can be easily embedded in any web site. It provides features dedicated to the visualization of metabolic networks and pathways and thus offers a flexible solution to analyse omics data in a biochemical context. AVAILABILITY AND IMPLEMENTATION: Documentation and link to GIT code repository (GPL 3.0 license) are available at this URL: http://metexplore.toulouse.inra.fr/metexploreViz/doc/.

4.
Bioinformatics ; 33(24): 4007-4009, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28961954

RESUMEN

SUMMARY: The Polyomics integrated Metabolomics Pipeline (PiMP) fulfils an unmet need in metabolomics data analysis. PiMP offers automated and user-friendly analysis from mass spectrometry data acquisition to biological interpretation. Our key innovations are the Summary Page, which provides a simple overview of the experiment in the format of a scientific paper, containing the key findings of the experiment along with associated metadata; and the Metabolite Page, which provides a list of each metabolite accompanied by 'evidence cards', which provide a variety of criteria behind metabolite annotation including peak shapes, intensities in different sample groups and database information. AVAILABILITY AND IMPLEMENTATION: PiMP is available at http://polyomics.mvls.gla.ac.uk, and access is freely available on request. 50 GB of space is allocated for data storage, with unrestricted number of samples and analyses per user. Source code is available at https://github.com/RonanDaly/pimp and licensed under the GPL. CONTACT: karl.burgess@glasgow.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Cromatografía Liquida , Espectrometría de Masas , Metabolómica/métodos , Programas Informáticos , Internet , Metaboloma
5.
BMC Plant Biol ; 17(1): 231, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29202709

RESUMEN

BACKGROUND: Calotropis procera is a wild plant species in the family Apocynaceae that is able to grow in harsh, arid and heat stressed conditions. Understanding how this highly adapted plant persists in harsh environments should inform future efforts to improve the hardiness of crop and forage plant species. To study the plant response to droµght and osmotic stress, we treated plants with polyethylene glycol and NaCl and carried out transcriptomic and metabolomics measurements across a time-course of five days. RESULTS: We identified a highly dynamic transcriptional response across the time-course including dramatic changes in inositol signaling, stress response genes and cytokinins. The resulting metabolome changes also involved sharp increases of myo-inositol, a key signaling molecule and elevated amino acid metabolites at later times. CONCLUSIONS: The data generated here provide a first glimpse at the expressed genome of C. procera, a plant that is exceptionally well adapted to arid environments. We demonstrate, through transcriptome and metabolome analysis that myo-inositol signaling is strongly induced in response to drought and salt stress and that there is elevation of amino acid concentrations after prolonged osmotic stress. This work should lay the foundations of future studies in adaptation to arid environments.


Asunto(s)
Calotropis/metabolismo , Calotropis/genética , Genes de Plantas , Metaboloma , Estrés Oxidativo , Estrés Fisiológico , Transcriptoma
6.
Sci Rep ; 12(1): 7933, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562573

RESUMEN

The AbsoluteIDQ p400 HR kit is a commercial product for targeted metabolomics. While the kit has been validated for human plasma and serum, adherent cell lysates have not yet been evaluated. We have optimized the detection of polar and lipid metabolites in cell lysates using the kit to enable robust and repeatable analysis of the detected metabolites. Parameters optimized include total cell mass, loading volume and extraction solvent. We present a cell preparation and analytical method and report on the performance of the kit with regard to detectability of the targeted metabolites and their repeatability. The kit can be successfully used for a relative quantification analysis of cell lysates from adherent cells although validated only for human plasma and serum. Most metabolites are below the limit of the Biocrates' set quantification limits and we confirmed that this relative quantification can be used for further statistical analysis. Using this approach, up to 45% of the total metabolites in the kit can be detected with a reasonable analytical performance (lowest median RSD 9% and 13% for LC and FIA, respectively) dependent on the method used. We recommend using ethanol as the extraction solvent for cell lysates of osteosarcoma cell lines for the broadest metabolite coverage and 25 mg of cell mass with a loading volume of 20 µL per sample.


Asunto(s)
Técnicas de Cultivo de Célula , Metabolómica , Humanos , Metabolómica/métodos , Solventes
7.
Metabolites ; 11(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34940646

RESUMEN

Using manual derivatization in gas chromatography-mass spectrometry samples have varying equilibration times before analysis which increases technical variability and limits the number of potential samples analyzed. By contrast, automated derivatization methods can derivatize and inject each sample in an identical manner. We present a fully automated (on-line) derivatization method used for targeted analysis of different matrices. We describe method optimization and compare results from using off-line and on-line derivatization protocols, including the robustness and reproducibility of the methods. Our final parameters for the derivatization process were 20 µL of methoxyamine (MeOx) in pyridine for 60 min at 30 °C followed by 80 µL N-Methyl-N-trimethylsilyltrifluoracetamide (MSTFA) for 30 min at 30 °C combined with 4 h of equilibration time. The repeatability test in plasma and liver revealed a median relative standard deviation (RSD) of 16% and 10%, respectively. Serum samples showed a consistent intra-batch median RSD of 20% with an inter-batch variability of 27% across three batches. The direct comparison of on-line versus off-line demonstrated that on-line was fit for purpose and improves repeatability with a measured median RSD of 11% compared to 17% using the same method off-line. In summary, we recommend that optimized on-line methods may improve results for metabolomics and should be used where available.

8.
iScience ; 24(11): 103314, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34805785

RESUMEN

Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes its biosynthesis and a CL remodeling process. Here we studied the impact of CL biosynthesis and the enzyme cardiolipin synthase (CLS) on cardiac function. CLS and cardiac CL species were significantly downregulated in cardiomyocytes following catecholamine-induced cardiac damage in mice, accompanied by increased oxygen consumption rates, signs of oxidative stress, and mitochondrial uncoupling. RNAi-mediated cardiomyocyte-specific knockdown of CLS in Drosophila melanogaster resulted in marked cardiac dilatation, severe impairment of systolic performance, and slower diastolic filling velocity assessed by fluorescence-based heart imaging. Finally, we showed that CL72:8 is significantly decreased in cardiac samples from patients with heart failure with reduced ejection fraction (HFrEF). In summary, we identified CLS as a regulator of cardiac function. Considering the cardiac depletion of CL species in HFrEF, pharmacological targeting of CLS may be a promising therapeutic approach.

9.
Cancers (Basel) ; 12(6)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471029

RESUMEN

Osteosarcoma (OS) is a primary malignant bone tumor and OS metastases are mostly found in the lung. The limited understanding of the biology of metastatic processes in OS limits the ability for effective treatment. Alterations to the metabolome and its transformation during metastasis aids the understanding of the mechanism and provides information on treatment and prognosis. The current study intended to identify metabolic alterations during OS progression by using a targeted gas chromatography mass spectrometry approach. Using a female OS cell line model, malignant and metastatic cells increased their energy metabolism compared to benign OS cells. The metastatic cell line showed a faster metabolic flux compared to the malignant cell line, leading to reduced metabolite pools. However, inhibiting both glycolysis and glutaminolysis resulted in a reduced proliferation. In contrast, malignant but non-metastatic OS cells showed a resistance to glycolytic inhibition but a strong dependency on glutamine as an energy source. Our in vivo metabolic approach hinted at a potential sex-dependent metabolic alteration in OS patients with lung metastases (LM), although this will require validation with larger sample sizes. In line with the in vitro results, we found that female LM patients showed a decreased central carbon metabolism compared to metastases from male patients.

10.
Metabolites ; 10(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861324

RESUMEN

A gas chromatography mass spectrometry (GC-MS) metabolomics protocol was modified for quenching, harvesting, and extraction of metabolites from adherent cells grown under high (20%) fetal calf serum conditions. The reproducibility of using either 50% or 80% methanol for quenching of cells was compared for sample harvest. To investigate the efficiency and reproducibility of intracellular metabolite extraction, different volumes and ratios of chloroform were tested. Additionally, we compared the use of total protein amount versus cell mass as normalization parameters. We demonstrate that the method involving 50% methanol as quenching buffer followed by an extraction step using an equal ratio of methanol:chloroform:water (1:1:1, v/v/v) followed by the collection of 6 mL polar phase for GC-MS measurement was superior to the other methods tested. Especially for large sample sets, its comparative ease of measurement leads us to recommend normalization to protein amount for the investigation of intracellular metabolites of adherent human cells grown under high (or standard) fetal calf serum conditions. To avoid bias, care should be taken beforehand to ensure that the ratio of total protein to cell number are consistent among the groups tested. For this reason, it may not be suitable where culture conditions or cell types have very different protein outputs (e.g., hypoxia vs. normoxia). The full modified protocol is available in the Supplementary Materials.

11.
Atherosclerosis ; 291: 99-106, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31706078

RESUMEN

BACKGROUND AND AIMS: Gonadal hormones are mainly thought to account for sex and gender differences in the incidence, clinical manifestation and therapy of many cardiovascular diseases. However, intrinsic sex differences at the cellular level are mostly overlooked. Here, we assessed sex-specific metabolic and functional differences between male and female human umbilical vein endothelial cells (HUVECs). METHODS: Cellular metabolism was investigated by bioenergetic studies (Seahorse Analyser) and a metabolomic approach. Protein levels were determined by Western blots and proteome analysis. Vascular endothelial growth factor (VEGF)-stimulated cellular migration was assessed by gap closure. HUVECs from dizygotic twin pairs were used for most experiments. RESULTS: No sex differences were observed in untreated cells. However, sexual dimorphisms appeared after stressing the cells by serum starvation and treatment with VEGF. Under both conditions, female cells had higher intracellular ATP and metabolite levels. A significant decline in ATP levels was observed in male cells after serum starvation. After VEGF, the ratio of glycolysis/mitochondrial respiration was higher in female cells and migration was more pronounced. CONCLUSIONS: These results point to an increased stress tolerance of female cells. We therefore propose that female cells have an energetic advantage over male cells under conditions of diminished nutrient supply. A more favourable energy balance of female HUVECs after serum starvation and VEGF could potentially explain their stronger migratory capacity.


Asunto(s)
Movimiento Celular , Metabolismo Energético , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Gemelos Dicigóticos , Inductores de la Angiogénesis/farmacología , Movimiento Celular/efectos de los fármacos , Medio de Cultivo Libre de Suero/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Humanos , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Fenotipo , Mapas de Interacción de Proteínas , Caracteres Sexuales , Factores Sexuales , Factor A de Crecimiento Endotelial Vascular/farmacología
12.
Metabolites ; 9(9)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438611

RESUMEN

Lack of reliable peak detection impedes automated analysis of large-scale gas chromatography-mass spectrometry (GC-MS) metabolomics datasets. Performance and outcome of individual peak-picking algorithms can differ widely depending on both algorithmic approach and parameters, as well as data acquisition method. Therefore, comparing and contrasting between algorithms is difficult. Here we present a workflow for improved peak picking (WiPP), a parameter optimising, multi-algorithm peak detection for GC-MS metabolomics. WiPP evaluates the quality of detected peaks using a machine learning-based classification scheme based on seven peak classes. The quality information returned by the classifier for each individual peak is merged with results from different peak detection algorithms to create one final high-quality peak set for immediate down-stream analysis. Medium- and low-quality peaks are kept for further inspection. By applying WiPP to standard compound mixes and a complex biological dataset, we demonstrate that peak detection is improved through the novel way to assign peak quality, an automated parameter optimisation, and results in integration across different embedded peak picking algorithms. Furthermore, our approach can provide an impartial performance comparison of different peak picking algorithms. WiPP is freely available on GitHub (https://github.com/bihealth/WiPP) under MIT licence.

13.
Front Mol Biosci ; 3: 2, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26909353

RESUMEN

This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

14.
Sci Rep ; 6: 25592, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27185277

RESUMEN

Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Síndrome de Lesch-Nyhan/metabolismo , Animales , Humanos , Hipoxantina Fosforribosiltransferasa/deficiencia , Hipoxantina Fosforribosiltransferasa/genética , Síndrome de Lesch-Nyhan/genética , Masculino , Metabolómica/métodos , Ratones Noqueados , Mutación , Nucleótidos de Purina/metabolismo , Ratas Transgénicas , Roedores , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA