Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445793

RESUMEN

Spaceflight causes cardiovascular changes due to microgravity-induced redistribution of body fluids and musculoskeletal unloading. Cardiac deconditioning and atrophy on Earth are associated with altered Trp53 and oxidative stress-related pathways, but the effects of spaceflight on cardiac changes at the molecular level are less understood. We tested the hypothesis that spaceflight alters the expression of key genes related to stress response pathways, which may contribute to cardiovascular deconditioning during extended spaceflight. Mice were exposed to spaceflight for 15 days or maintained on Earth (ground control). Ventricle tissue was harvested starting ~3 h post-landing. We measured expression of select genes implicated in oxidative stress pathways and Trp53 signaling by quantitative PCR. Cardiac expression levels of 37 of 168 genes tested were altered after spaceflight. Spaceflight downregulated transcription factor, Nfe2l2 (Nrf2), upregulated Nox1 and downregulated Ptgs2, suggesting a persistent increase in oxidative stress-related target genes. Spaceflight also substantially upregulated Cdkn1a (p21) and cell cycle/apoptosis-related gene Myc, and downregulated the inflammatory response gene Tnf. There were no changes in apoptosis-related genes such as Trp53. Spaceflight altered the expression of genes regulating redox balance, cell cycle and senescence in cardiac tissue of mice. Thus, spaceflight may contribute to cardiac dysfunction due to oxidative stress.


Asunto(s)
Ciclo Celular/genética , Regulación de la Expresión Génica/genética , Genes cdc/genética , Corazón/fisiología , Estrés Oxidativo/genética , Animales , Apoptosis/genética , Femenino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Transducción de Señal/genética , Vuelo Espacial/métodos , Ingravidez
2.
Am J Physiol Cell Physiol ; 319(4): C734-C745, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783660

RESUMEN

Accumulation of oxidative damage from excess reactive oxygen species (ROS) may contribute to skeletal aging and mediate adverse responses to physiological challenges. Wild-type (WT) mice and transgenic mice (male, 16 wk of age) with human catalase targeted to the mitochondria (mCAT) were analyzed for skeletal responses to the remodeling stimuli of combined hind-limb unloading and exposure to ionizing radiation (137Cs, 2 Gy). Treatment for 2 wk caused lipid peroxidation in the bones WT but not mCAT mice, showing that transgene expression mitigated oxidative stress. Ex vivo osteoblast colony growth rate was 95% greater in mCAT than WT mice and correlated with catalase activity levels (P < 0.005, r = 0.67), although terminal osteoblast and osteoclast differentiation were unaffected. mCAT mice had lower cancellous bone volume and cortical size than WT mice. Ambulatory control mCAT animals also displayed reduced cancellous and cortical structural properties compared with control WT mice. In mCAT but not WT mice, treatment caused an unexpectedly rapid radial expansion (+8% cortical area, +22% moment of inertia), reminiscent of compensatory bone growth during advancing age. In contrast, treatment caused similar structural deficits in cancellous tissue of mCAT and WT mice. In sum, mitochondrial ROS signaling via H2O2 was important for the acquisition of adult bone structure and catalase overexpression failed to protect cancellous tissue from treatment. In contrast, catabolic stimuli caused radial expansion in mCAT not WT mice, suggesting that mitochondrial ROS in skeletal cells act to suppress tissue turnover in response to remodeling challenges.


Asunto(s)
Envejecimiento/genética , Huesos/metabolismo , Catalasa/genética , Estrés Oxidativo/genética , Animales , Huesos/patología , Regulación de la Expresión Génica/genética , Humanos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/genética , Ratones , Ratones Transgénicos , Mitocondrias/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
3.
Int J Mol Sci ; 18(10)2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29035346

RESUMEN

Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.


Asunto(s)
Vasos Sanguíneos/fisiología , Huesos/fisiología , Oxidación-Reducción , Transducción de Señal , Vuelo Espacial , Animales , Antioxidantes/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatología , Huesos/metabolismo , Huesos/fisiopatología , Humanos , Óxido Nítrico/metabolismo , Estrés Oxidativo , Radiación , Especies Reactivas de Oxígeno/metabolismo , Ingravidez , Simulación de Ingravidez
4.
Int J Mol Sci ; 18(10)2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28994728

RESUMEN

Space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized that ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-weeks old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 MeV/n) or high-LET 56Fe ions (600 MeV/n) using either low (5 or 10 cGy) or high (50 or 200 cGy) doses at NASA's Space Radiation Lab. Five weeks or one year after irradiation, tissues were harvested and analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed by RT-PCR during the proliferative or mineralizing phase of growth, and differentiation was analyzed by imaging mineralized nodules. As expected, a high dose (200 cGy), but not lower doses, of either 56Fe or protons caused a loss of cancellous bone volume/total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; 56Fe (200 cGy) inhibited osteoblastogenesis by more than 90% (5 weeks and 1 year post-IR). After 5 weeks, irradiation (protons or 56Fe) caused few changes in gene expression levels during osteoblastogenesis, although a high dose 56Fe (200 cGy) increased Catalase and Gadd45. The addition of exogenous superoxide dismutase (SOD) protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET (137Cs γ) when irradiated in vitro, but had limited protective effects on high-LET 56Fe-exposed cells. In sum, either protons or 56Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET 56Fe increased redox-related gene expression, albeit to a limited extent, and inhibited osteoblastogenesis. Doses below 50 cGy did not elicit widespread responses in any parameter measured. We conclude that high-LET irradiation at 200 cGy impaired osteoblastogenesis and regulated steady-state gene expression of select redox-related genes during osteoblastogenesis, which may contribute to persistent bone loss.


Asunto(s)
Células de la Médula Ósea/efectos de la radiación , Isótopos de Hierro/efectos adversos , Fenómenos Fisiológicos Musculoesqueléticos/efectos de la radiación , Osteogénesis/efectos de la radiación , Estrés Oxidativo , Exposición a la Radiación/efectos adversos , Animales , Relación Dosis-Respuesta en la Radiación , Expresión Génica/genética , Expresión Génica/efectos de la radiación , Transferencia Lineal de Energía , Masculino , Ratones , Ratones Endogámicos C57BL , Osteogénesis/genética , Oxidación-Reducción/efectos de la radiación , Protones/efectos adversos , Dosis de Radiación , Radiación Ionizante
5.
Am J Physiol Lung Cell Mol Physiol ; 308(5): L416-28, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25526737

RESUMEN

Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions.


Asunto(s)
Radiación Cósmica/efectos adversos , Lesión Pulmonar/etiología , Animales , Apoptosis , Autofagia , Biomarcadores/metabolismo , Líquido del Lavado Bronquioalveolar , Proliferación Celular , Modelos Animales de Enfermedad , Hipoxia/sangre , Hipoxia/complicaciones , Hipoxia/patología , Lesión Pulmonar/sangre , Lesión Pulmonar/patología , Masculino , Ratones Endogámicos C3H , Estrés Oxidativo , Oxígeno/sangre , Neumonía/sangre , Neumonía/complicaciones , Neumonía/patología , Transducción de Señal
6.
Neurosci Biobehav Rev ; 132: 908-935, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767877

RESUMEN

As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.


Asunto(s)
Vuelo Espacial , Ingravidez , Animales , Astronautas/psicología , Encéfalo , Humanos , Factores de Tiempo
7.
NPJ Microgravity ; 7(1): 24, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230490

RESUMEN

Isolation on Earth can alter physiology and signaling of organs systems, including the central nervous system. Although not in complete solitude, astronauts operate in an isolated environment during spaceflight. In this study, we determined the effects of isolation and simulated microgravity solely or combined, on the inflammatory cytokine milieu of the hippocampus. Adult female wild-type mice underwent simulated microgravity by hindlimb unloading for 30 days in single or social (paired) housing. In hippocampus, simulated microgravity and isolation each regulate a discrete repertoire of cytokines associated with inflammation. Their combined effects are not additive. A model for mitochondrial reactive oxygen species (ROS) quenching via targeted overexpression of the human catalase gene to the mitochondria (MCAT mice), are protected from isolation- and/or simulated microgravity-induced changes in cytokine expression. These findings suggest a key role for mitochondrial ROS signaling in neuroinflammatory responses to spaceflight and prolonged bedrest, isolation, and confinement on Earth.

8.
Cells ; 10(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921854

RESUMEN

Long duration spaceflight poses potential health risks to astronauts during flight and re-adaptation after return to Earth. There is an emerging need for NASA to provide successful and reliable therapeutics for long duration missions when capability for medical intervention will be limited. Clinically relevant, human placenta-derived therapeutic stromal cells (PLX-PAD) are a promising therapeutic alternative. We found that treatment of adult female mice with PLX-PAD near the onset of simulated weightlessness by hindlimb unloading (HU, 30 d) was well-tolerated and partially mitigated decrements caused by HU. Specifically, PLX-PAD treatment rescued HU-induced thymic atrophy, and mitigated HU-induced changes in percentages of circulating neutrophils, but did not rescue changes in the percentages of lymphocytes, monocytes, natural killer (NK) cells, T-cells and splenic atrophy. Further, PLX-PAD partially mitigated HU effects on the expression of select cytokines in the hippocampus. In contrast, PLX-PAD failed to protect bone and muscle from HU-induced effects, suggesting that the mechanisms which regulate the structure of these mechanosensitive tissues in response to disuse are discrete from those that regulate the immune- and central nervous system (CNS). These findings support the therapeutic potential of placenta-derived stromal cells for select physiological deficits during simulated spaceflight. Multiple countermeasures are likely needed for comprehensive protection from the deleterious effects of prolonged spaceflight.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Placenta/citología , Ingravidez , Animales , Peso Corporal , Proliferación Celular , Citocinas/metabolismo , Femenino , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Modelos Animales , Sistemas Neurosecretores/patología , Tamaño de los Órganos , Embarazo , Roedores , Estrés Fisiológico , Células del Estroma/citología , Microtomografía por Rayos X
9.
PLoS One ; 15(1): e0226434, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31967993

RESUMEN

A round-trip human mission to Mars is anticipated to last roughly three years. Spaceflight conditions are known to cause loss of bone mineral density (BMD) in astronauts, increasing bone fracture risk. There is an urgent need to understand BMD progression as a function of spaceflight time to minimize associated health implications and ensure mission success. Here we introduce a nonlinear mathematical model of BMD loss for candidate human missions to Mars: (i) Opposition class trajectory (400-600 days), and (ii) Conjunction class trajectory (1000-1200 days). Using femoral neck BMD data (N = 69) from astronauts after 132-day and 228-day spaceflight and the World Health Organization's fracture risk recommendation, we predicted post-mission risk and associated osteopathology. Our model predicts 62% opposition class astronauts and 100% conjunction class astronauts will develop osteopenia, with 33% being at risk for osteoporosis. This model can help in implementing countermeasure strategies and inform space agencies' choice of crew candidates.


Asunto(s)
Astronautas/estadística & datos numéricos , Densidad Ósea , Marte , Osteoporosis/etiología , Vuelo Espacial , Ingravidez/efectos adversos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoporosis/diagnóstico
10.
Front Immunol ; 11: 564950, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224136

RESUMEN

A comprehensive understanding of spaceflight factors involved in immune dysfunction and the evaluation of biomarkers to assess in-flight astronaut health are essential goals for NASA. An elevated neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker candidate, as leukocyte differentials are altered during spaceflight. In the reduced gravity environment of space, rodents and astronauts displayed elevated NLR and granulocyte-to-lymphocyte ratios (GLR), respectively. To simulate microgravity using two well-established ground-based models, we cultured human whole blood-leukocytes in high-aspect rotating wall vessels (HARV-RWV) and used hindlimb unloaded (HU) mice. Both HARV-RWV simulation of leukocytes and HU-exposed mice showed elevated NLR profiles comparable to spaceflight exposed samples. To assess mechanisms involved, we found the simulated microgravity HARV-RWV model resulted in an imbalance of redox processes and activation of myeloperoxidase-producing inflammatory neutrophils, while antioxidant treatment reversed these effects. In the simulated microgravity HU model, mitochondrial catalase-transgenic mice that have reduced oxidative stress responses showed reduced neutrophil counts, NLR, and a dampened release of selective inflammatory cytokines compared to wildtype HU mice, suggesting simulated microgravity induced oxidative stress responses that triggered inflammation. In brief, both spaceflight and simulated microgravity models caused elevated NLR, indicating this as a potential biomarker for future in-flight immune health monitoring.


Asunto(s)
Astronautas , Granulocitos/inmunología , Estado de Salud , Linfocitos/inmunología , Neutrófilos/inmunología , Animales , Biomarcadores , Donantes de Sangre , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo , Vuelo Espacial , Simulación de Ingravidez
11.
Sci Rep ; 10(1): 6484, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32300161

RESUMEN

Spaceflight is a unique environment that includes at least two factors which can negatively impact skeletal health: microgravity and ionizing radiation. We have previously shown that a diet supplemented with dried plum powder (DP) prevented radiation-induced bone loss in mice. In this study, we investigated the capacity of the DP diet to prevent bone loss in mice following exposure to simulated spaceflight, combining microgravity (by hindlimb unloading) and radiation exposure. The DP diet was effective at preventing most decrements in bone micro-architectural and mechanical properties due to hindlimb unloading alone and simulated spaceflight. Furthermore, we show that the DP diet can protect osteoprogenitors from impairments resulting from simulated microgravity. Based on our findings, a dietary supplementation with DP could be an effective countermeasure against the skeletal deficits observed in astronauts during spaceflight.


Asunto(s)
Enfermedades Óseas Metabólicas/prevención & control , Radiación Cósmica/efectos adversos , Suspensión Trasera/efectos adversos , Prunus domestica , Vuelo Espacial , Animales , Densidad Ósea/fisiología , Densidad Ósea/efectos de la radiación , Enfermedades Óseas Metabólicas/diagnóstico , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/fisiopatología , Modelos Animales de Enfermedad , Alimentos en Conserva , Suspensión Trasera/fisiología , Humanos , Masculino , Ratones , Esqueleto/diagnóstico por imagen , Esqueleto/fisiopatología , Esqueleto/efectos de la radiación , Microtomografía por Rayos X
12.
Sci Rep ; 10(1): 2336, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047211

RESUMEN

Animal models are useful for exploring the health consequences of prolonged spaceflight. Capabilities were developed to perform experiments in low earth orbit with on-board sample recovery, thereby avoiding complications caused by return to Earth. For NASA's Rodent Research-1 mission, female mice (ten 32 wk C57BL/6NTac; ten 16 wk C57BL/6J) were launched on an unmanned vehicle, then resided on the International Space Station for 21/22d or 37d in microgravity. Mice were euthanized on-orbit, livers and spleens dissected, and remaining tissues frozen in situ for later analyses. Mice appeared healthy by daily video health checks and body, adrenal, and spleen weights of 37d-flight (FLT) mice did not differ from ground controls housed in flight hardware (GC), while thymus weights were 35% greater in FLT than GC. Mice exposed to 37d of spaceflight displayed elevated liver mass (33%) and select enzyme activities compared to GC, whereas 21/22d-FLT mice did not. FLT mice appeared more physically active than respective GC while soleus muscle showed expected atrophy. RNA and enzyme activity levels in tissues recovered on-orbit were of acceptable quality. Thus, this system establishes a new capability for conducting long-duration experiments in space, enables sample recovery on-orbit, and avoids triggering standard indices of chronic stress.


Asunto(s)
Peso Corporal , Hígado/metabolismo , Vuelo Espacial , Ingravidez , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Factores de Tiempo
13.
Radiat Res ; 171(3): 283-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19267555

RESUMEN

Ionizing radiation can cause substantial tissue degeneration, which may threaten the long-term health of astronauts and radiotherapy patients. To determine whether a single dose of radiation acutely compromises structural integrity in the postpubertal skeleton, 18-week-old male mice were exposed to (137)Cs gamma radiation (1 or 2 Gy). The structure of high-turnover, cancellous bone was analyzed by microcomputed tomography (microCT) 3 or 10 days after irradiation and in basal controls (tissues harvested at the time of irradiation) and age-matched controls. Irradiation (2 Gy) caused a 20% decline in tibial cancellous bone volume fraction (BV/TV) within 3 days and a 43% decline within 10 days, while 1 Gy caused a 28% reduction 10 days later. The BV/TV decrement was due to increased spacing and decreased thickness of trabeculae. Radiation also increased ( approximately 150%) cancellous surfaces lined with tartrate-resistant, acid phosphatase-positive osteoclasts, an index of increased bone resorption. Radiation decreased lumbar vertebral BV/TV 1 month after irradiation, showing the persistence of cancellous bone loss, although mechanical properties in compression were unaffected. In sum, a single dose of gamma radiation rapidly increased osteoclast surface in cancellous tissue and compromised cancellous microarchitecture in the remodeling appendicular and axial skeleton of postpubertal mice.


Asunto(s)
Envejecimiento/patología , Huesos/patología , Huesos/efectos de la radiación , Osteoclastos/efectos de la radiación , Irradiación Corporal Total/efectos adversos , Animales , Peso Corporal/efectos de la radiación , Densidad Ósea/efectos de la radiación , Resorción Ósea/diagnóstico por imagen , Huesos/diagnóstico por imagen , Huesos/fisiopatología , Radioisótopos de Cesio , Relación Dosis-Respuesta en la Radiación , Rayos gamma/efectos adversos , Masculino , Ratones , Tamaño de los Órganos/efectos de la radiación , Osteoclastos/patología , Factores de Tiempo , Tomografía Computarizada por Rayos X
14.
Sci Rep ; 9(1): 10154, 2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289284

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

15.
Sci Rep ; 9(1): 4717, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30976012

RESUMEN

Interest in space habitation has grown dramatically with planning underway for the first human transit to Mars. Despite a robust history of domestic and international spaceflight research, understanding behavioral adaptation to the space environment for extended durations is scant. Here we report the first detailed behavioral analysis of mice flown in the NASA Rodent Habitat on the International Space Station (ISS). Following 4-day transit from Earth to ISS, video images were acquired on orbit from 16- and 32-week-old female mice. Spaceflown mice engaged in a full range of species-typical behaviors. Physical activity was greater in younger flight mice as compared to identically-housed ground controls, and followed the circadian cycle. Within 7-10 days after launch, younger (but not older), mice began to exhibit distinctive circling or 'race-tracking' behavior that evolved into coordinated group activity. Organized group circling behavior unique to spaceflight may represent stereotyped motor behavior, rewarding effects of physical exercise, or vestibular sensation produced via self-motion. Affording mice the opportunity to grab and run in the RH resembles physical activities that the crew participate in routinely. Our approach yields a useful analog for better understanding human responses to spaceflight, providing the opportunity to assess how physical movement influences responses to microgravity.


Asunto(s)
Adaptación Fisiológica/fisiología , Conducta Animal/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vuelo Espacial/métodos , Ingravidez
16.
Front Physiol ; 10: 1147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572207

RESUMEN

The hindlimb unloading (HU) model has been used extensively to simulate the cephalad fluid shift and musculoskeletal disuse observed in spaceflight with its application expanding to study immune, cardiovascular and central nervous system responses, among others. Most HU studies are performed with singly housed animals, although social isolation also can substantially impact behavior and physiology, and therefore may confound HU experimental results. Other HU variants that allow for paired housing have been developed although no systematic assessment has been made to understand the effects of social isolation on HU outcomes. Hence, we aimed to determine the contribution of social isolation to tissue responses to HU. To accomplish this, we developed a refinement to the traditional NASA Ames single housing HU system to accommodate social housing in pairs, retaining desirable features of the original design. We conducted a 30-day HU experiment with adult, female mice that were either singly or socially housed. HU animals in both single and social housing displayed expected musculoskeletal deficits versus housing matched, normally loaded (NL) controls. However, select immune and hypothalamic-pituitary-adrenal (HPA) axis responses were differentially impacted by the HU social environment relative to matched NL controls. HU led to a reduction in % CD4+ T cells in singly housed, but not in socially housed mice. Unexpectedly, HU increased adrenal gland mass in socially housed but not singly housed mice, while social isolation increased adrenal gland mass in NL controls. HU also led to elevated plasma corticosterone levels at day 30 in both singly and socially housed mice. Thus, musculoskeletal responses to simulated weightlessness are similar regardless of social environment with a few differences in adrenal and immune responses. Our findings show that combined stressors can mask, not only exacerbate, select responses to HU. These findings further expand the utility of the HU model for studying possible combined effects of spaceflight stressors.

17.
Matrix Biol ; 27(7): 609-18, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18619537

RESUMEN

The mammalian skeleton adjusts bone structure and strength in response to changes in mechanical loading, however the molecular and cellular mechanisms governing this process in vivo are unknown. Terminally differentiated osteoblasts, the osteocytes, are presumptive mechanosensory cells for bone, and cell culture studies demonstrate that beta1 integrins participate in mechanical signaling. To determine the role of beta1 integrins in osteoblasts in vivo, we used the Cre-lox system to delete beta1 integrin from cells committed to the osteoblast lineage. While pCol2.3 Cre-mediated recombination was widespread in bones from Colalpha1(I)-Cre+/beta1fl/fl conditional knockout mice (cKO), beta1 integrin protein was depleted from cortical osteocytes, but not from cancellous osteocytes or cells lining bone surfaces in adults. Bones from cKO mice that were normally loaded were similar in structure to WT littermates. However, hindlimb unloading of adult cKO mice for one week intended to cause bone loss (disuse osteopenia), resulted in unexpected, rapid changes in the geometry of cortical bone; hindlimb unloading increased the cross-sectional area, marrow area, and moments of inertia in cKO, but not WT mice. Furthermore, these hindlimb unloading-induced geometric changes in cortical bone of cKO mice resulted in increased whole bone bending stiffness and strength of the femur. Together, these results confirmed the concept that osteocytes are mechanosensory cells and showed beta1 integrins in cortical osteocytes limited changes in cortical geometry in response to disuse, thus providing the first in vivo evidence that beta1 integrins on osteocytes mediate specific aspects of mechanotransduction.


Asunto(s)
Integrina beta1/fisiología , Osteocitos/metabolismo , Enfermedad Aguda , Animales , Enfermedades Óseas Metabólicas , Femenino , Eliminación de Gen , Integrina beta1/genética , Integrina beta1/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Modelos Genéticos , Osteoblastos/metabolismo , Transducción de Señal , Resistencia a la Tracción , Distribución Tisular
18.
J Appl Physiol (1985) ; 120(10): 1196-206, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26869711

RESUMEN

The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development.


Asunto(s)
Suspensión Trasera/fisiología , Miembro Posterior/fisiología , Roedores/fisiología , Ingravidez/efectos adversos , Animales , Huesos/fisiología , Humanos , Músculos/fisiología , Vuelo Espacial/métodos , Simulación de Ingravidez/métodos
19.
PLoS One ; 11(12): e0167391, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907194

RESUMEN

BACKGROUND: Even with recent scientific advancements, challenges posed by limited resources and capabilities at the time of sample dissection continue to limit the collection of high quality tissues from experiments that can be conducted only infrequently and at high cost, such as in space. The resources and time it takes to harvest tissues post-euthanasia, and the methods and duration of long duration storage, potentially have negative impacts on sample quantity and quality, thereby limiting the scientific outcome that can be achieved. OBJECTIVES: The goals of this study were to optimize methods for both sample recovery and science return from rodent experiments, with possible relevance to both ground based and spaceflight studies. The first objective was to determine the impacts of tissue harvest time post-euthanasia, preservation methods, and storage duration, focusing on RNA quality and enzyme activities in liver and spleen as indices of sample quality. The second objective was to develop methods that will maximize science return by dissecting multiple tissues after long duration storage in situ at -80°C. METHODS: Tissues of C57Bl/6J mice were dissected and preserved at various time points post-euthanasia and stored at -80°C for up to 11 months. In some experiments, tissues were recovered from frozen carcasses which had been stored at -80°C up to 7 months. RNA quantity and quality was assessed by measuring RNA Integrity Number (RIN) values using an Agilent Bioanalyzer. Additionally, the quality of tissues was assessed by measuring activities of hepatic enzymes (catalase, glutathione reductase and GAPDH). RESULTS: Fresh tissues were collected up to one hour post-euthanasia, and stored up to 11 months at -80°C, with minimal adverse effects on the RNA quality of either livers or RNAlater-preserved spleens. Liver enzyme activities were similar to those of positive controls, with no significant effect observed at any time point. Tissues dissected from frozen carcasses that had been stored for up to 7 months at -80°C had variable results, depending on the specific tissue analyzed. RNA quality of liver, heart, and kidneys were minimally affected after 6-7 months of storage at -80°C, whereas RNA degradation was evident in tissues such as small intestine, bone, and bone marrow when they were collected from the carcasses frozen for 2.5 months. CONCLUSION: These results demonstrate that 1) the protocols developed for spaceflight experiments with on-orbit dissections support the retrieval of high quality samples for RNA expression and some protein analyses, despite delayed preservation post-euthanasia or prolonged storage, and 2) many additional tissues for gene expression analysis can be obtained by dissection even following prolonged storage of the tissue in situ at -80°C. These findings have relevance both to high value, ground-based experiments when sample collection capability is severely constrained, and to spaceflight experiments that entail on-orbit sample recovery by astronauts.


Asunto(s)
Criopreservación/métodos , Vuelo Espacial , Manejo de Especímenes , Recolección de Tejidos y Órganos/métodos , Animales , Congelación , Humanos , Mamíferos , Ratones , Estabilidad del ARN/genética , Factores de Tiempo
20.
Sci Rep ; 6: 29901, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27467019

RESUMEN

As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth's protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth's magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4-5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation.


Asunto(s)
Astronautas , Enfermedades Cardiovasculares/mortalidad , Radiación Cósmica/efectos adversos , Traumatismos por Radiación/mortalidad , Adulto , Enfermedades Cardiovasculares/fisiopatología , Endotelio Vascular/fisiopatología , Endotelio Vascular/efectos de la radiación , Femenino , Humanos , Masculino , Luna , Exposición Profesional/efectos adversos , Dosis de Radiación , Traumatismos por Radiación/fisiopatología , Protección Radiológica , Vuelo Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA