Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292917

RESUMEN

Oxidized polyvinyl alcohol (OxPVA) is a new polymer for the fabrication of nerve conduits (NCs). Looking for OxPVA device optimization and coupling it with a natural sheath may boost bioactivity. Thus, OxPVA/chitosan sponges (ChS) as hybrid scaffolds were investigated to predict in the vivo behaviour of two-layered NCs. To encourage interaction with cells, ChS were functionalized with the self-assembling-peptide (SAP) EAK, without/with the laminin-derived sequences -IKVAV/-YIGSR. Thus, ChS and the hybrid scaffolds were characterized for mechanical properties, ultrastructure (Scanning Electron Microscopy, SEM), bioactivity, and biocompatibility. Regarding mechanical analysis, the peptide-free ChS showed the highest values of compressive modulus and maximum stress. However, among +EAK groups, ChS+EAK showed a significantly higher maximum stress than that found for ChS+EAK-IKVAV and ChS+EAK-YIGSR. Considering ultrastructure, microporous interconnections were tighter in both the OxPVA/ChS and +EAK groups than in the others; all the scaffolds induced SH-SY5Y cells' adhesion/proliferation, with significant differences from day 7 and a higher total cell number for OxPVA/ChS+EAK scaffolds, in accordance with SEM. The scaffolds elicited only a slight inflammation after 14 days of subcutaneous implantation in Balb/c mice, proving biocompatibility. ChS porosity, EAK 3D features and neuro-friendly attitude (shared with IKVAV/YIGSR motifs) may confer to OxPVA certain bioactivity, laying the basis for future appealing NCs.


Asunto(s)
Quitosano , Neuroblastoma , Ratones , Animales , Humanos , Alcohol Polivinílico/química , Ingeniería de Tejidos , Quitosano/química , Laminina , Porosidad , Polímeros/química , Andamios del Tejido/química , Materiales Biocompatibles
2.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008612

RESUMEN

The aim of this study was to evaluate the effect of a time-dependent magnetic field on the biological performance of periodontal ligament stem cells (PDLSCs). A Western blot analysis and Alamar Blue assay were performed to investigate the proliferative capacity of magnetically stimulated PDLSCs (PDLSCs MAG) through the study of the MAPK cascade (p-ERK1/2). The observation of ALP levels allowed the evaluation of the effect of the magnetic field on osteogenic differentiation. Metabolomics data, such as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and ATP production provided an overview of the PDLSCs MAG metabolic state. Moreover, the mitochondrial state was investigated through confocal laser scanning microscopy. Results showed a good viability for PDLSCs MAG. Magnetic stimulation can activate the ERK phosphorylation more than the FGF factor alone by promoting a better cell proliferation. Osteogenic differentiation was more effectively induced by magnetic stimulation. The metabolic panel indicated significant changes in the mitochondrial cellular respiration of PDLSCs MAG. The results suggested that periodontal ligament stem cells (PDLSCs) can respond to biophysical stimuli such as a time-dependent magnetic field, which is able to induce changes in cell proliferation and differentiation. Moreover, the magnetic stimulation also produced an effect on the cell metabolic profile. Therefore, the current study demonstrated that a time-dependent magnetic stimulation may improve the regenerative properties of PDLSCs.


Asunto(s)
Campos Magnéticos , Ligamento Periodontal/citología , Células Madre/citología , Adenosina Trifosfato/metabolismo , Adulto , Fosfatasa Alcalina/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células Madre/efectos de los fármacos , Células Madre/enzimología , Adulto Joven
3.
Int J Mol Sci ; 21(6)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188158

RESUMEN

Feline immunodeficiency virus (FIV), a lentivirus causing an immunodeficiency syndrome in cats, represents a relevant model of pre-screening therapies for human immunodeficiency virus (HIV). The envelope glycoproteins gp36 in FIV and gp41 in HIV mediate the fusion of the virus with the host cell membrane. They have a common structural framework in the C-terminal region that includes a Trp-rich membrane-proximal external region (MPER) and a C-terminal heptad repeat (CHR). MPER is essential for the correct positioning of gp36 on the lipid membrane, whereas CHR is essential for the stabilization of the low-energy six-helical bundle (6HB) that is necessary for the fusion of the virus envelope with the cell membrane. Conformational data for gp36 are missing, and several aspects of the MPER structure of different lentiviruses are still debated. In the present work, we report the structural investigation of a gp36 construct that includes the MPER and part of the CHR domain (737-786gp36 CHR-MPER). Using 2D and 3D homo and heteronuclear NMR spectra on 15N and 13C double-labelled samples, we solved the NMR structure in micelles composed of dodecyl phosphocholine (DPC) and sodium dodecyl sulfate (SDS) 90/10 M: M. The structure of 737-786gp36 CHR-MPER is characterized by a helix-turn-helix motif, with a regular α-helix and a moderately flexible 310 helix, characterizing the CHR and the MPER domains, respectively. The two helices are linked by a flexible loop regulating their orientation at a ~43° angle. We investigated the positioning of 737-786gp36 CHR-MPER on the lipid membrane using spin label-enhanced NMR and ESR spectroscopies. On a different scale, using confocal microscopy imaging, we studied the effect of 737-786gp36 CHR-MPER on 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPC/DOPG) multilamellar vesicles (MLVs). This effect results in membrane budding and tubulation that is reminiscent of a membrane-plasticizing role that is typical of MPER domains during the event in which the virus envelope merges with the host cell membrane.


Asunto(s)
Virus de la Inmunodeficiencia Felina/metabolismo , Imagen por Resonancia Magnética/métodos , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , VIH-1 , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Conformación Proteica , Internalización del Virus
4.
BMC Surg ; 18(Suppl 1): 21, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31074383

RESUMEN

BACKGROUND: The combination of breast conserving surgery (BCS) with plastic surgery techniques has provided a useful surgical tool matching the radicality of the oncological excision with the preservation of breast cosmesis. Even though BCS represents a good option for surgical treatment of tumors located in these quadrants, wide excisions often necessitate breast reshaping in order to avoid nipple areola complex (NAC) displacement and skin retraction. We present a new surgical technique to repair upper-outer quadrants' defects following breast cancer excision using dermo-glandular flaps and an axillary adipo-fascial flap. METHODS: During the period from January 2014 to December 2015, 168 patients with an upper-outer quadrant's breast cancer have been treated in our Department. 83 women have been treated with the described oncoplastic technique and immediate contra-lateral symmetrisation and 85 women underwent standard BCS. We present surgical, oncological and cosmetic outcomes comparing our results with standard BCS. RESULTS: At a mean follow-up of 27 months loco-regional recurrences in the two groups were comparable. Short-term complication rates were comparable between the two groups. Re-intervention rates for positive margins were significantly higher in the standard BCS group. The overall satisfaction with cosmetic outcome both assessed by the patient and the surgeon was significantly higher in the oncoplastic group. CONCLUSIONS: The proposed oncoplastic technique represents a safe and effective solution for reshaping that follows upper-outer breast cancer wide excision, achieving comparable complication rates, lower re-intervention rates for positive margins and better cosmetic results when compared with standard BCS.


Asunto(s)
Neoplasias de la Mama/cirugía , Mamoplastia/métodos , Mastectomía Segmentaria/métodos , Colgajos Quirúrgicos , Adulto , Anciano , Axila , Femenino , Humanos , Márgenes de Escisión , Persona de Mediana Edad , Recurrencia Local de Neoplasia/cirugía , Estudios Retrospectivos
5.
Am J Dent ; 30(4): 227-232, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29178706

RESUMEN

PURPOSE: To study the influence of the resin bonding layer thickness and the bulk filling material stiffness in adhesive class II mesio-occlusal-distal (MOD) restorations using numerical finite element analysis (FEA). METHODS: Four 3D-FE models of teeth restored with different filling material stiffness and resin bonding layer thickness were built-up and analyzed. The 3D model of a sound lower molar was also analyzed and compared with restored ones. The tooth tissues (enamel, dentin), dental restoration and bolus on the occlusal surface, was divided into 3D solid CTETRA elements with four grid points. The adhesive bonding around the dental restoration was modeled with shell elements. Polymerization shrinkage was simulated with a thermal expansion approach. Mechanical behavior of restored models in terms of stress and displacement distributions, under the combination effects of polymerization shrinkage and occlusal load (600 N), was analyzed. All the materials were assumed to behave as elastic materials throughout the entire deformation. RESULTS: Numerical results show that the mechanical response of the restored models was very different compared to the sound tooth ones, where the stress was uniformly distributed from enamel to dentin with no critical stress concentration. In the restored models, the highest stress values were detected in the enamel, near the enamel-dentin interface and in the bulk restorative material. Tooth preparations A and B showed lower gradient stresses than corresponding C and D. The value of the vertical displacement components in models A and B were higher than corresponding C and D. The maximum displacement values were mainly located around the groove and were higher by an order of magnitude than the sound models. The results showed better mechanical response with models A and B compared to C and D. It is also evident that resin bonding thickness slightly affected the stress level of the restored teeth. CLINICAL SIGNIFICANCE: Class II MOD direct bulk resin composite restorations showed a high susceptibility to damage at the marginal and internal tissue interfaces depending on their own stiffness. The use of resin-based bulk filling materials is not recommended for large class II MOD adhesive restorations due to mechanical behavior failure risk.


Asunto(s)
Resinas Compuestas , Restauración Dental Permanente , Preparación de la Cavidad Dental , Materiales Dentales , Análisis del Estrés Dental , Análisis de Elementos Finitos , Ensayo de Materiales , Estrés Mecánico
6.
J Mater Sci Mater Med ; 26(10): 250, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26420041

RESUMEN

Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field.


Asunto(s)
Nanopartículas de Magnetita/química , Nanocompuestos/química , Andamios del Tejido/química , Fenómenos Biomecánicos , Células Cultivadas , Fuerza Compresiva , Humanos , Imagenología Tridimensional , Nanopartículas de Magnetita/ultraestructura , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Microscopía Electrónica de Rastreo , Nanocompuestos/ultraestructura , Poliésteres/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Microtomografía por Rayos X
7.
Nanoscale Adv ; 6(12): 3064-3072, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38868830

RESUMEN

Bioinspired strategies for scaffold design and optimization were improved by the introduction of Additive Manufacturing (AM), thus allowing for replicating and reproducing complex shapes and structures in a reliable manner, adopting different kinds of polymeric and nanocomposite materials properly combined according to the features of the natural host tissues. Benefiting from recent findings in AM, a Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique was employed for obtaining graphene-like material (GL) uniform coatings on 3D scaffolds for tissue repair strategies, towards the development of a new concept 3D scaffold with controlled morphological/architectural and surface features and mechanical and biological properties. The effect of the material-design combination through an integrated technological approach (i.e., MAPLE deposition of GL on 3D AM PCL scaffolds) was assessed through scanning electron microscopy, atomic force microscopy, contact angle measurements, mechanical measurements and biological analyses (cell viability assay and alkaline phosphatase activity) in conjunction with confocal laser scanning microscopy. The differentiation of hMSCs towards the osteoblast phenotype was also investigated analysing the gene expression profile. The obtained findings provided a further insight into the development of improved strategies for the functionalization or combination of GL with other materials and 3D structures in a hybrid fashion for ensuring a tighter adhesion onto the substrates, improving cell fate over time, without negatively altering the mechanical properties and behaviour of the neat constructs. In particular, the results provided interesting information, making 3D AM GL-coated scaffolds potential candidates for bone tissue engineering.

8.
ScientificWorldJournal ; 2013: 270260, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24459423

RESUMEN

Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS) neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs), to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs) that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nanocompuestos/química , Enfermedades Neurodegenerativas/terapia , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Elasticidad , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Enfermedades Neurodegenerativas/patología
9.
Biomed Microdevices ; 14(6): 1115-27, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22767245

RESUMEN

An Additive Manufacturing technique for the fabrication of three-dimensional polymeric scaffolds, based on wet-spinning of poly(ε-caprolactone) (PCL) or PCL/hydroxyapatite (HA) solutions, was developed. The processing conditions to fabricate scaffolds with a layer-by-layer approach were optimized by studying their influence on fibres morphology and alignment. Two different scaffold architectures were designed and fabricated by tuning inter-fibre distance and fibres staggering. The developed scaffolds showed good reproducibility of the internal architecture characterized by highly porous, aligned fibres with an average diameter in the range 200-250 µm. Mechanical characterization showed that the architecture and HA loading influenced the scaffold compressive modulus and strength. Cell culture experiments employing MC3T3-E1 preosteoblast cell line showed good cell adhesion, proliferation, alkaline phosphatase activity and bone mineralization on the developed scaffolds.


Asunto(s)
Huesos/química , Polímeros/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Células 3T3 , Fosfatasa Alcalina/metabolismo , Animales , Antraquinonas/metabolismo , Materiales Biocompatibles , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Durapatita/metabolismo , Diseño de Equipo/métodos , Ensayo de Materiales , Ratones , Microscopía Confocal , Microscopía Electrónica de Rastreo , Poliésteres/metabolismo , Porosidad , Reproducibilidad de los Resultados
10.
Eur J Med Chem ; 237: 114400, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35489223

RESUMEN

Alzheimer's disease (AD), is the most common neurodegenerative disorder of the aging population resulting in progressive cognitive and functional decline. Accumulation of amyloid plaques around neuronal cells is considered a critical pathogenetic event and, in most cases, a hallmark of the pathology. In the attempt to identify anti-AD drug candidates, hundreds of molecules targeting Aß peptides have been screened. Peptide molecules have been widely explored, appreciating chemical stability, biocompatibility, and low production cost. More recently, many anti-Aß(1-42) monoclonal antibodies have been developed, given the excellent potential of immunotherapy for treating or preventing AD. Antibodies are versatile ligands that bind a large variety of molecules with high affinity and specificity; however, their extensive therapeutic application is complex and requires huge economic investments. Novel approaches to identify alternative antibody formats are considered with great interest. In this context, taking advantage of the favorable peptide properties and the availability of Aß-antibodies structural data, we followed an innovative research approach to identify short peptide sequences on the model of the binding sites of Aß(1-42)/antibodies. WAibH and SYSTPGK were designed as mimics of solanezumab and aducanumab, respectively. Circular dichroism and nuclear magnetic resonance analysis reveal that the antibody-derived peptides interact with Aß(1-42) in the soluble monomeric form. Moreover, AFM microscopy imaging shows that WAibH and SYSTPGK are capable of controlling the Aß(1-42) aggregation. The strategy to identify WAibH and SYSTPGK is innovative and can be widely applied for new anti-Aß antibody mimicking peptides.


Asunto(s)
Péptidos beta-Amiloides , Anticuerpos , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Péptidos beta-Amiloides/química , Amiloidosis , Anticuerpos/química , Humanos , Ligandos , Fragmentos de Péptidos/química
11.
Biomacromolecules ; 12(12): 4183-95, 2011 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22032302

RESUMEN

Chitosan (Ch) is a nontoxic and biocompatible polysaccharide extensively used in biomedical applications. Ch, as a polycation, can be combined with anionic polymers by layer-by-layer (LbL) self-assembly, giving rise to multilayered complexed architectures. These structures can be used in tissue engineering strategies, as drug delivery systems, or artificial matrices mimicking the extracellular microenvironment. In this work, Ch was combined with poly(γ-glutamic acid) (γ-PGA). γ-PGA is a polyanion, which was microbially produced, and is known for its low immunogenic reaction and low cytotoxicity. Multilayered ultrathin films were assembled by LbL, with a maximum of six layers. The interaction between both polymers was analyzed by: ellipsometry, quartz crystal microbalance with dissipation, Fourier transform infrared spectroscopy, atomic force microscopy, and zeta potential measurements. Ch/γ-PGA polyelectrolyte multilayers (PEMs) revealed no cytotoxicity according to ISO 10993-5. Overall, this study demonstrates that Ch can interact electrostatically with γ-PGA forming multilayered films. Furthermore, this study provides a comprehensive characterization of Ch/γ-PGA PEM structures, elucidating the contribution of each layer for the nanostructured films. These model surfaces can be useful substrates to study cell-biomaterial interactions in tissue regeneration.


Asunto(s)
Quitosano/metabolismo , Electrólitos/síntesis química , Ácido Poliglutámico/análogos & derivados , Materiales Biocompatibles/química , Quitosano/análisis , Quitosano/química , Sistemas de Liberación de Medicamentos/métodos , Electrólitos/análisis , Electrólitos/química , Microscopía de Fuerza Atómica , Modelos Moleculares , Ácido Poliglutámico/análisis , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/metabolismo , Ingeniería de Tejidos/métodos , Sustancias Viscoelásticas/análisis , Sustancias Viscoelásticas/química
12.
J Appl Biomater Biomech ; 9(2): 151-63, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22065393

RESUMEN

Polymer-based composite materials are ideal for applications where high stiffness-to-weight and strength-to-weight ratios are required. From aerospace and aeronautical field to biomedical applications, fiber-reinforced polymers have replaced metals, thus emerging as an interesting alternative. As widely reported, the mechanical behavior of the composite materials involves investigation on micro- and macro-scale, taking into consideration micromechanics, macromechanics and lamination theory. Clinical situations often require repairing connective tissues and the use of composite materials may be suitable for these applications because of the possibility to design tissue substitutes or implants with the required mechanical properties. Accordingly, this review aims at stressing the importance of fiber-reinforced composite materials to make advanced and biomimetic prostheses with tailored mechanical properties, starting from the basic principle design, technologies, and a brief overview of composites applications in several fields. Fiber-reinforced composite materials for artificial tendons, ligaments, and intervertebral discs, as well as for hip stems and mandible models will be reviewed, highlighting the possibility to mimic the mechanical properties of the soft and hard tissues that they replace.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biomiméticos/química , Biomimética/métodos , Resinas Compuestas/química , Prótesis e Implantes , Humanos
13.
J Healthc Eng ; 2021: 1342316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628401

RESUMEN

[This corrects the article DOI: 10.1155/2020/2707560.].

14.
Polymers (Basel) ; 13(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33401469

RESUMEN

Additive manufacturing (AM) is changing our current approach to the clinical treatment of bone diseases, providing new opportunities to fabricate customized, complex 3D structures with bioactive materials. Among several AM techniques, the BioCell Printing is an advanced, integrated system for material manufacture, sterilization, direct cell seeding and growth, which allows for the production of high-resolution micro-architectures. This work proposes the use of the BioCell Printing to fabricate polymer-based scaffolds reinforced with ceramics and loaded with bisphosphonates for the treatment of osteoporotic bone fractures. In particular, biodegradable poly(ε-caprolactone) was blended with hydroxyapatite particles and clodronate, a bisphosphonate with known efficacy against several bone diseases. The scaffolds' morphology was investigated by means of Scanning Electron Microscopy (SEM) and micro-Computed Tomography (micro-CT) while Energy Dispersive X-ray Spectroscopy (EDX) and X-ray Photoelectron Spectroscopy (XPS) revealed the scaffolds' elemental composition. A thermal characterization of the composites was accomplished by Thermogravimetric analyses (TGA). The mechanical performance of printed scaffolds was investigated under static compression and compared against that of native human bone. The designed 3D scaffolds promoted the attachment and proliferation of human MSCs. In addition, the presence of clodronate supported cell differentiation, as demonstrated by the normalized alkaline phosphatase activity. The obtained results show that the BioCell Printing can easily be employed to generate 3D constructs with pre-defined internal/external shapes capable of acting as a temporary physical template for regeneration of cancellous bone tissues.

15.
Materials (Basel) ; 14(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401673

RESUMEN

A wide range of materials has been considered to repair cranial defects. In the field of cranioplasty, poly(methyl methacrylate) (PMMA)-based bone cements and modifications through the inclusion of copper doped tricalcium phosphate (Cu-TCP) particles have been already investigated. On the other hand, aliphatic polyesters such as poly(ε-caprolactone) (PCL) and polylactic acid (PLA) have been frequently investigated to make scaffolds for cranial bone regeneration. Accordingly, the aim of the current research was to design and fabricate customized hybrid devices for the repair of large cranial defects integrating the reverse engineering approach with additive manufacturing, The hybrid device consisted of a 3D additive manufactured polyester porous structures infiltrated with PMMA/Cu-TCP (97.5/2.5 w/w) bone cement. Temperature profiles were first evaluated for 3D hybrid devices (PCL/PMMA, PLA/PMMA, PCL/PMMA/Cu-TCP and PLA/PMMA/Cu-TCP). Peak temperatures recorded for hybrid PCL/PMMA and PCL/PMMA/Cu-TCP were significantly lower than those found for the PLA-based ones. Virtual and physical models of customized devices for large cranial defect were developed to assess the feasibility of the proposed technical solutions. A theoretical analysis was preliminarily performed on the entire head model trying to simulate severe impact conditions for people with the customized hybrid device (PCL/PMMA/Cu-TCP) (i.e., a rigid sphere impacting the implant region of the head). Results from finite element analysis (FEA) provided information on the different components of the model.

16.
Genes (Basel) ; 12(2)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578759

RESUMEN

Growing numbers of asymptomatic women who become aware of carrying a breast cancer gene mutation (BRCA) mutation are choosing to undergo risk-reducing bilateral mastectomies with immediate breast reconstruction. We reviewed the literature with the aim of assessing the oncological safety of nipple-sparing mastectomy (NSM) as a risk-reduction procedure in BRCA-mutated patients. Nine studies reporting on the incidence of primary breast cancer post NSM in asymptomatic BRCA mutated patients undergoing risk-reducing bilateral procedures met the inclusion criteria. NSM appears to be a safe option for BRCA mutation carriers from an oncological point of view, with low reported rates of new breast cancers, low rates of postoperative complications, and high levels of satisfaction and postoperative quality of life. However, larger multi-institutional studies with longer follow-up are needed to establish this procedure as the best surgical option in this setting.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Mamoplastia/métodos , Mastectomía/métodos , Mutación , Calidad de Vida/psicología , Adulto , Enfermedades Asintomáticas , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/psicología , Neoplasias de la Mama/cirugía , Toma de Decisiones Clínicas/ética , Femenino , Estudios de Seguimiento , Expresión Génica , Humanos , Mamoplastia/psicología , Mamoplastia/rehabilitación , Mastectomía/psicología , Mastectomía/rehabilitación , Persona de Mediana Edad , Pezones/irrigación sanguínea , Pezones/inervación , Medición de Riesgo/estadística & datos numéricos
17.
Front Bioeng Biotechnol ; 9: 704185, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595158

RESUMEN

The advantages of additive manufactured scaffolds, as custom-shaped structures with a completely interconnected and accessible pore network from the micro- to the macroscale, are nowadays well established in tissue engineering. Pore volume and architecture can be designed in a controlled fashion, resulting in a modulation of scaffold's mechanical properties and in an optimal nutrient perfusion determinant for cell survival. However, the success of an engineered tissue architecture is often linked to its surface properties as well. The aim of this study was to create a family of polymeric pastes comprised of poly(ethylene oxide therephthalate)/poly(butylene terephthalate) (PEOT/PBT) microspheres and of a second biocompatible polymeric phase acting as a binder. By combining microspheres with additive manufacturing technologies, we produced 3D scaffolds possessing a tailorable surface roughness, which resulted in improved cell adhesion and increased metabolic activity. Furthermore, these scaffolds may offer the potential to act as drug delivery systems to steer tissue regeneration.

18.
Bioact Mater ; 6(11): 3851-3864, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33937589

RESUMEN

In the field of tissue regeneration, the lack of a stable endothelial lining may affect the hemocompatibility of both synthetic and biological replacements. These drawbacks might be prevented by specific biomaterial functionalization to induce selective endothelial cell (EC) adhesion. Decellularized bovine pericardia and porcine aortas were selectively functionalized with a REDV tetrapeptide at 10-5 M and 10-6 M working concentrations. The scaffold-bound peptide was quantified and REDV potential EC adhesion enhancement was evaluated in vitro by static seeding of human umbilical vein ECs. The viable cells and MTS production were statistically higher in functionalized tissues than in control. Scaffold histoarchitecture, geometrical features, and mechanical properties were unaffected by peptide anchoring. The selective immobilization of REDV was effective in accelerating ECs adhesion while promoting proliferation in functionalized decellularized tissues intended for blood-contacting applications.

19.
J Appl Biomater Biomech ; 8(2): 57-67, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20740467

RESUMEN

Tissue engineering may be defined as the application of biological, chemical and engineering principles toward the repair, restoration or regeneration of living tissue using biomaterials, cells and biologically active molecules alone or in combinations. The rapid restoration of tissue biomechanical function represents a great challenge, highlighting the need to mimic tissue structure and mechanical behavior through scaffold designs. For this reason, several biodegradable and bioresorbable materials, as well as technologies and scaffold designs, have been widely investigated from an experimental and/or clinical point of view. Accordingly, this review aims at stressing the importance of polymer-based composite materials to make multifunctional scaffolds for tissue engineering, with a special focus on bone, ligaments, meniscus and cartilage. Moreover, polymer-based nanocomposites will also be briefly introduced as an interesting strategy to improve the biological and mechanical performances of polymer scaffolds, especially for bone tissue engineering.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles , Polímeros , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Humanos
20.
J Appl Biomater Biomech ; 8(3): 146-52, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21337305

RESUMEN

PURPOSE: The importance of polymer-based composite materials to make multifunctional substrates for tissue engineering and the strategies to improve their performances have been stressed in the literature. Bioactive features of sol-gel synthesized poly(ε-caprolactone)/TiO2 or poly(ε-caprolactone)/ZrO2 organic-inorganic hybrid materials are widely documented. Accordingly, the aim of this preliminary research was to develop advanced composite substrates consisting of a poly(ε-caprolactone) matrix reinforced with sol-gel synthesized PCL/TiO2 or PCL/ZrO2 hybrid fillers. METHODS: Micro-computed tomography and atomic force microscopy analyses allowed to study surface topography and roughness. On the other hand, mechanical and biological performances were evaluated by small punch tests and Alamar Blue™ assay, respectively. RESULTS: Micro-computed tomography and atomic force microscopy analyses highlighted the effect of the preparation technique. Results from small punch tests and Alamar Blue™ assay evidenced that PCL reinforced with Ti2 (PCL=12, TiO2=88 wt%) and Zr2 (PCL=12, ZrO2=88 wt%) hybrid fillers provided better mechanical and biological performances. CONCLUSIONS: PCL reinforced with Ti2 (PCL=12, TiO2=88 wt%) and Zr2 (PCL=12, ZrO2=88 wt%) hybrid fillers could be considered as advanced composite substrates for hard tissue engineering.


Asunto(s)
Poliésteres/química , Ingeniería de Tejidos/métodos , Titanio/química , Circonio/química , Geles/química , Compuestos Inorgánicos/química , Microscopía de Fuerza Atómica , Compuestos Orgánicos/química , Polimetil Metacrilato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA