Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 175(7): 1902-1916.e13, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550788

RESUMEN

Nuclear architecture has never been carefully examined during early mammalian development at the stages leading to establishment of the embryonic and extra-embryonic lineages. Heterogeneous activity of the methyltransferase CARM1 during these stages results in differential methylation of histone H3R26 to modulate establishment of these two lineages. Here we show that CARM1 accumulates in nuclear granules at the 2- to 4-cell stage transition in the mouse embryo, with the majority corresponding to paraspeckles. The paraspeckle component Neat1 and its partner p54nrb are required for CARM1's association with paraspeckles and for H3R26 methylation. Conversely, CARM1 also influences paraspeckle organization. Depletion of Neat1 or p54nrb results in arrest at the 16- to 32-cell stage, with elevated expression of transcription factor Cdx2, promoting differentiation into the extra-embryonic lineage. This developmental arrest occurs at an earlier stage than following CARM1 depletion, indicating that paraspeckles act upstream of CARM1 but also have additional earlier roles in fate choice.


Asunto(s)
Blastocisto/metabolismo , Diferenciación Celular , Linaje de la Célula , Desarrollo Embrionario , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Blastocisto/citología , Puntos de Control del Ciclo Celular , Ratones , Proteínas Asociadas a Matriz Nuclear/genética , Proteína-Arginina N-Metiltransferasas/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética
2.
Nature ; 610(7930): 143-153, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007540

RESUMEN

Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro1-5, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells6-11. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization. Our embryo model displays headfolds with defined forebrain and midbrain regions and develops a beating heart-like structure, a trunk comprising a neural tube and somites, a tail bud containing neuromesodermal progenitors, a gut tube, and primordial germ cells. This complete embryo model develops within an extraembryonic yolk sac that initiates blood island development. Notably, we demonstrate that the neurulating embryo model assembled from Pax6-knockout ES cells aggregated with wild-type TS cells and iXEN cells recapitulates the ventral domain expansion of the neural tube that occurs in natural, ubiquitous Pax6-knockout embryos. Thus, these complete embryoids are a powerful in vitro model for dissecting the roles of diverse cell lineages and genes in development. Our results demonstrate the self-organization ability of ES cells and two types of extraembryonic stem cells to reconstitute mammalian development through and beyond gastrulation to neurulation and early organogenesis.


Asunto(s)
Embrión de Mamíferos , Gastrulación , Modelos Biológicos , Neurulación , Organogénesis , Animales , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Células Madre Embrionarias/citología , Endodermo/citología , Endodermo/embriología , Corazón/embriología , Mesencéfalo/embriología , Ratones , Tubo Neural/embriología , Factor de Transcripción PAX6/deficiencia , Factor de Transcripción PAX6/genética , Prosencéfalo/embriología , Somitos/embriología
3.
Nat Rev Mol Cell Biol ; 10(4): 265-75, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19305416

RESUMEN

Polo-like kinases (Plks) are potent regulators of M phase that are conserved from yeasts to humans. Their roles in mitotic entry, spindle pole functions and cytokinesis are broadly conserved despite physical and molecular differences in these processes in disparate organisms. Plks are characterized by their Polo-box domain, which mediates protein interactions. They are additionally controlled by phosphorylation, proteolysis and transcription, depending on the biological context. Plks are now recognized to link cell division to developmental processes and to function in differentiated cells. A comparison of Plk function and regulation between organisms offers insight into the rich variations of cell division.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
4.
Cell ; 136(1): 188-188.e1, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19135899
5.
Annu Rev Genet ; 43: 439-65, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19886809

RESUMEN

Accurate chromosome segregation is a prerequisite for the maintenance of the genomic stability. Consequently, elaborate molecular machineries and mechanisms emerged during the course of evolution in order to ensure proper division of the genetic material. The kinetochore, an essential multiprotein complex assembled on mitotic or meiotic centromeres, is an example of such machinery. Recently considerable progress has been made in understanding their composition, the recruitment hierarchy of their components, and the principles of their regulation. However, these advances are accompanied by a growing number of unanswered questions about the function of the individual subunits and of how the structure of the different subcomplexes relates to function. Here we review our rapidly growing knowledge on interacting networks of structural and regulatory proteins of the metazoan mitotic kinetochore: its centromeric foundations, its structural core, its components that interact with spindle microtubules and the spindle assembly checkpoint.


Asunto(s)
Centrómero/metabolismo , Cinetocoros/metabolismo , Animales , Segregación Cromosómica , Humanos , Microtúbulos/metabolismo
6.
Dev Biol ; 398(2): 147-52, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25512302

RESUMEN

The first lineage segregation in the mouse embryo generates the inner cell mass (ICM), which gives rise to the pluripotent epiblast and therefore the future embryo, and the trophectoderm (TE), which will build the placenta. The TE lineage depends on the transcription factor Cdx2. However, when Cdx2 first starts to act remains unclear. Embryos with zygotic deletion of Cdx2 develop normally until the late blastocyst stage leading to the conclusion that Cdx2 is important for the maintenance but not specification of the TE. In contrast, down-regulation of Cdx2 transcripts from the early embryo stage results in defects in TE specification before the blastocyst stage. Here, to unambiguously address at which developmental stage Cdx2 becomes first required, we genetically deleted Cdx2 from the oocyte stage using a Zp3-Cre/loxP strategy. Careful assessment of a large cohort of Cdx2 maternal-zygotic null embryos, all individually filmed, examined and genotyped, reveals an earlier lethal phenotype than observed in Cdx2 zygotic null embryos that develop until the late blastocyst stage. The developmental failure of Cdx2 maternal-zygotic null embryos is associated with cell death and failure of TE specification, starting at the morula stage. These results indicate that Cdx2 is important for the correct specification of TE from the morula stage onwards and that both maternal and zygotic pools of Cdx2 are required for correct pre-implantation embryogenesis.


Asunto(s)
Blastocisto/citología , Técnicas de Inactivación de Genes , Proteínas de Homeodominio/metabolismo , Mórula/citología , Factores de Transcripción/metabolismo , Cigoto/metabolismo , Animales , Blastocisto/metabolismo , Tipificación del Cuerpo , Cruzamiento , Factor de Transcripción CDX2 , Muerte Celular , Ectodermo/citología , Ectodermo/metabolismo , Desarrollo Embrionario , Femenino , Masculino , Ratones , Mórula/metabolismo , Factores de Transcripción/deficiencia , Cigoto/citología
7.
Nature ; 467(7316): 714-8, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20852615

RESUMEN

Centrioles are found in the centrosome core and, as basal bodies, at the base of cilia and flagella. Centriole assembly and duplication is controlled by Polo-like-kinase 4 (Plk4): these processes fail if Plk4 is downregulated and are promoted by Plk4 overexpression. Here we show that the centriolar protein Asterless (Asl; human orthologue CEP152) provides a conserved molecular platform, the amino terminus of which interacts with the cryptic Polo box of Plk4 whereas the carboxy terminus interacts with the centriolar protein Sas-4 (CPAP in humans). Drosophila Asl and human CEP152 are required for the centrosomal loading of Plk4 in Drosophila and CPAP in human cells, respectively. Depletion of Asl or CEP152 caused failure of centrosome duplication; their overexpression led to de novo centriole formation in Drosophila eggs, duplication of free centrosomes in Drosophila embryos, and centrosome amplification in cultured Drosophila and human cells. Overexpression of a Plk4-binding-deficient mutant of Asl prevented centriole duplication in cultured cells and embryos. However, this mutant protein was able to promote microtubule organizing centre (MTOC) formation in both embryos and oocytes. Such MTOCs had pericentriolar material and the centriolar protein Sas-4, but no centrioles at their core. Formation of such acentriolar MTOCs could be phenocopied by overexpression of Sas-4 in oocytes or embryos. Our findings identify independent functions for Asl as a scaffold for Plk4 and Sas-4 that facilitates self-assembly and duplication of the centriole and organization of pericentriolar material.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Centrosoma/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Oocitos/citología , Oocitos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
8.
Mol Cell ; 30(5): 541-2, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18538650

RESUMEN

In a recent paper in Developmental Cell, Yamashiro et al. (2008) report that the PP1 regulatory subunit MYPT1 interacts with PLK1 and antagonizes essential mitotic functions of PLK1, at least in part by promoting the dephosphorylation of PLK1 at Thr210.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Humanos , Mitosis/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Quinasa Tipo Polo 1
9.
J Biol Chem ; 289(32): 21844-55, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24920672

RESUMEN

The nucleosome remodeling and deacetylase (NuRD) complex is a widely conserved transcriptional co-regulator that harbors both nucleosome remodeling and histone deacetylase activities. It plays a critical role in the early stages of ES cell differentiation and the reprogramming of somatic to induced pluripotent stem cells. Abnormalities in several NuRD proteins are associated with cancer and aging. We have investigated the architecture of NuRD by determining the structure of a subcomplex comprising RbAp48 and MTA1. Surprisingly, RbAp48 recognizes MTA1 using the same site that it uses to bind histone H4, showing that assembly into NuRD modulates RbAp46/48 interactions with histones. Taken together with other results, our data show that the MTA proteins act as scaffolds for NuRD complex assembly. We further show that the RbAp48-MTA1 interaction is essential for the in vivo integration of RbAp46/48 into the NuRD complex.


Asunto(s)
Histona Desacetilasas/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Proteínas Represoras/química , Proteína 4 de Unión a Retinoblastoma/química , Secuencia de Aminoácidos , Animales , Ensamble y Desensamble de Cromatina , Secuencia Conservada , Cristalografía por Rayos X , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Proteína 7 de Unión a Retinoblastoma/química , Proteína 7 de Unión a Retinoblastoma/genética , Proteína 7 de Unión a Retinoblastoma/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
PLoS Biol ; 10(1): e1001250, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22291575

RESUMEN

The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules) requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC), which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity) and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Cinetocoros/enzimología , Proteínas Serina-Treonina Quinasas/genética , Animales , Aurora Quinasa B , Aurora Quinasas , Técnicas de Cultivo de Célula , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Células HeLa , Humanos , Microtúbulos/metabolismo , Mitosis/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Huso Acromático/genética , Huso Acromático/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(15): 5729-34, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22451918

RESUMEN

Mutations in Drosophila merry-go-round (mgr) have been known for over two decades to lead to circular mitotic figures and loss of meiotic spindle integrity. However, the identity of its gene product has remained undiscovered. We now show that mgr encodes the Prefoldin subunit counterpart of human von Hippel Lindau binding-protein 1. Depletion of Mgr from cultured cells also leads to formation of monopolar and abnormal spindles and centrosome loss. These phenotypes are associated with reductions of tubulin levels in both mgr flies and mgr RNAi-treated cultured cells. Moreover, mgr spindle defects can be phenocopied by depleting ß-tubulin, suggesting Mgr function is required for tubulin stability. Instability of ß-tubulin in the mgr larval brain is less pronounced than in either mgr testes or in cultured cells. However, expression of transgenic ß-tubulin in the larval brain leads to increased tubulin instability, indicating that Prefoldin might only be required when tubulins are synthesized at high levels. Mgr interacts with Drosophila von Hippel Lindau protein (Vhl). Both proteins interact with unpolymerized tubulins, suggesting they cooperate in regulating tubulin functions. Accordingly, codepletion of Vhl with Mgr gives partial rescue of tubulin instability, monopolar spindle formation, and loss of centrosomes, leading us to propose a requirement for Vhl to promote degradation of incorrectly folded tubulin in the absence of functional Prefoldin. Thus, Vhl may play a pivotal role: promoting microtubule stabilization when tubulins are correctly folded by Prefoldin and tubulin destruction when they are not.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades de Proteína/metabolismo , Tubulina (Proteína)/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Animales , Secuencia Conservada , Drosophila melanogaster/citología , Humanos , Microtúbulos/metabolismo , Mutación/genética , Unión Proteica , Estabilidad Proteica , Proteolisis , Huso Acromático/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(42): 17343-8, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21987826

RESUMEN

The small GTPase Rab5 is a conserved regulator of membrane trafficking; it regulates the formation of early endosomes, their transport along microtubules, and the fusion to the target organelles. Although several members of the endocytic pathway were recently implicated in spindle organization, it is unclear whether Rab5 has any role during mitosis. Here, we describe that Rab5 is required for proper chromosome alignment during Drosophila mitoses. We also found that Rab5 associated in vivo with nuclear Lamin and mushroom body defect (Mud), the Drosophila counterpart of nuclear mitotic apparatus protein (NuMA). Consistent with this finding, Rab5 was required for the disassembly of the nuclear envelope at mitotic entry and the accumulation of Mud at the spindle poles. Furthermore, Mud depletion caused chromosome misalignment defects that resembled the defects of Rab5 RNAi cells, and double-knockdown experiments indicated that the two proteins function in a linear pathway. Our results indicate a role for Rab5 in mitosis and reinforce the emerging view of the contributions made by cell membrane dynamics to spindle function.


Asunto(s)
Segregación Cromosómica/fisiología , Proteínas de Drosophila/metabolismo , Laminas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo , Proteínas de Unión al GTP rab5/antagonistas & inhibidores , Proteínas de Unión al GTP rab5/genética
13.
PLoS Genet ; 7(8): e1002225, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21852956

RESUMEN

Protein phosphatase 2A (PP2A) plays a major role in dephosphorylating the targets of the major mitotic kinase Cdk1 at mitotic exit, yet how it is regulated in mitotic progression is poorly understood. Here we show that mutations in either the catalytic or regulatory twins/B55 subunit of PP2A act as enhancers of gwl(Scant), a gain-of-function allele of the Greatwall kinase gene that leads to embryonic lethality in Drosophila when the maternal dosage of the mitotic kinase Polo is reduced. We also show that heterozygous mutant endos alleles suppress heterozygous gwl(Scant); many more embryos survive. Furthermore, heterozygous PP2A mutations make females heterozygous for the strong mutation polo(11) partially sterile, even in the absence of gwl(Scant). Heterozygosity for an endos mutation suppresses this PP2A/polo(11) sterility. Homozygous mutation or knockdown of endos leads to phenotypes suggestive of defects in maintaining the mitotic state. In accord with the genetic interactions shown by the gwl(Scant) dominant mutant, the mitotic defects of Endos knockdown in cultured cells can be suppressed by knockdown of either the catalytic or the Twins/B55 regulatory subunits of PP2A but not by the other three regulatory B subunits of Drosophila PP2A. Greatwall phosphorylates Endos at a single site, Ser68, and this is essential for Endos function. Together these interactions suggest that Greatwall and Endos act to promote the inactivation of PP2A-Twins/B55 in Drosophila. We discuss the involvement of Polo kinase in such a regulatory loop.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Mitosis , Mutación , Péptidos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Células Cultivadas , Drosophila melanogaster/citología , Femenino , Fertilidad/genética , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Estudios de Asociación Genética , Larva/citología , Larva/genética , Masculino , Microscopía Fluorescente , Sistema Nervioso/citología , Péptidos/genética , Fosfoproteínas Fosfatasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Imagen de Lapso de Tiempo
14.
Nat Commun ; 15(1): 4467, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796459

RESUMEN

As daughter centrioles assemble during G2, they recruit conserved Ana3/RTTN followed by its partner Rcd4/PPP1R35. Together, this contributes to the subsequent recruitment of Ana1/CEP295, required for the centriole's conversion to a centrosome. Here, we show that Rcd4/PPP1R35 is also required to maintain 9-fold centriole symmetry in the Drosophila male germline; its absence causes microtubule triplets to disperse into a reduced number of doublet or singlet microtubules. rcd4-null mutant spermatocytes display skinny centrioles that elongate normally and localize centriolar components correctly. Mutant spermatocytes also have centrioles of normal girth that splay at their proximal ends when induced to elongate by Ana1 overexpression. Skinny and splayed spermatid centrioles can still recruit a proximal centriole-like (PCL) structure marking a capability to initiate features of centriole duplication in developing sperm. Thus, stable 9-fold symmetry of microtubule triplets is not essential for centriole growth, correct longitudinal association of centriole components, and aspects of centriole duplication.


Asunto(s)
Centriolos , Proteínas de Drosophila , Microtúbulos , Espermatocitos , Centriolos/metabolismo , Centriolos/ultraestructura , Centriolos/genética , Animales , Masculino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Espermatocitos/metabolismo , Microtúbulos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Espermátides/metabolismo , Espermátides/citología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Mutación , Drosophila
15.
STAR Protoc ; 5(2): 102974, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38581676

RESUMEN

De novo genome assemblies are common tools for examining novel biological phenomena in non-model organisms. Here, we present a protocol for preparing Drosophila genomic DNA to create chromosome-level de novo genome assemblies. We describe steps for high-molecular-weight DNA preparation with phenol or Genomic-tips, quality control, long-read nanopore sequencing, short-read DNA library preparation, and sequencing. We then detail procedures of genome assembly, annotation, and assessment that can be used for downstream comparison and functional analysis. For complete details on the use and execution of this protocol, please refer to Sperling et al.1.


Asunto(s)
ADN , Drosophila , Genómica , Animales , Genómica/métodos , Drosophila/genética , ADN/genética , Análisis de Secuencia de ADN/métodos , Genoma de los Insectos/genética , Cromosomas/genética , Biblioteca de Genes , Drosophila melanogaster/genética
16.
Open Biol ; 14(6): 240065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38896085

RESUMEN

The transition from oocyte to embryo requires translation of maternally provided transcripts that in Drosophila is activated by Pan Gu kinase to release a rapid succession of 13 mitotic cycles. Mitotic entry is promoted by several protein kinases that include Greatwall/Mastl, whose Endosulfine substrates antagonize Protein Phosphatase 2A (PP2A), facilitating mitotic Cyclin-dependent kinase 1/Cyclin B kinase activity. Here we show that hyperactive greatwallScant can not only be suppressed by mutants in its Endos substrate but also by mutants in Pan Gu kinase subunits. Conversely, mutants in me31B or trailer hitch, which encode a complex that represses hundreds of maternal mRNAs, enhance greatwallScant . Me31B and Trailer Hitch proteins, known substrates of Pan Gu kinase, copurify with Endos. This echoes findings that budding yeast Dhh1, orthologue of Me31B, associates with Igo1/2, orthologues of Endos and substrates of the Rim15, orthologue of Greatwall. endos-derived mutant embryos show reduced Me31B and elevated transcripts for the mitotic activators Cyclin B, Polo and Twine/Cdc25. Together, our findings demonstrate a previously unappreciated conservation of the Greatwall-Endosulfine pathway in regulating translational repressors and its interactions with the Pan Gu kinase pathway to regulate translation and/or stability of maternal mRNAs upon egg activation.


Asunto(s)
Proteínas de Drosophila , Regulación del Desarrollo de la Expresión Génica , Oocitos , Proteína Fosfatasa 2 , Animales , Femenino , ARN Helicasas DEAD-box , Drosophila melanogaster/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Mutación , Oocitos/metabolismo , Oocitos/citología , Biosíntesis de Proteínas , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estabilidad del ARN , ARN Mensajero Almacenado/metabolismo , ARN Mensajero Almacenado/genética
17.
Proc Natl Acad Sci U S A ; 107(14): 6364-9, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20308546

RESUMEN

A crucial question in mammalian development is how cells of the early embryo differentiate into distinct cell types. The first decision is taken when cells undertake waves of asymmetric division that generate one daughter on the inside and one on the outside of the embryo. After this division, some cells on the inside remain pluripotent and give rise to the epiblast, and hence the future body, whereas others develop into the primitive endoderm, an extraembryonic tissue. How the fate of these inside cells is decided is unknown: Is the process random, or is it related to their developmental origins? To address this question, we traced all cells by live-cell imaging in intact, unmanipulated embryos until the epiblast and primitive endoderm became distinct. This analysis revealed that inner cell mass (ICM) cells have unrestricted developmental potential. However, cells internalized by the first wave of asymmetric divisions are biased toward forming pluripotent epiblast, whereas cells internalized in the next two waves of divisions are strongly biased toward forming primitive endoderm. Moreover, we show that cells internalized by the second wave up-regulate expression of Gata6 and Sox17, and changing the expression of these genes determines whether the cells become primitive endoderm. Finally, with our ability to determine the origin of cells, we find that inside cells that are mispositioned when they are born can sort into the correct layer. In conclusion, we propose a model in which the timing of cell internalization, cell position, and cell sorting combine to determine distinct lineages of the preimplantation mouse embryo.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Animales , Blastocisto/citología , Movimiento Celular , Tamaño de la Célula , Embrión de Mamíferos/metabolismo , Femenino , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Masculino , Ratones , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Regulación hacia Arriba
18.
STAR Protoc ; 4(4): 102585, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37740913

RESUMEN

Most species of sexually reproducing Drosophila are capable of some degree of facultative parthenogenesis, which involves the initiation of development in an unfertilized egg. Here, we present an optimized protocol to screen facultative parthenogenesis in Drosophila. We describe steps for the collection and maintenance of virgin flies. We then detail offspring screening for the analysis of parthenogenesis. This protocol can be applied to different Drosophila strains and can be adapted for the analysis of parthenogenesis in other animals. For complete details on the use and execution of this protocol, please refer to Sperling et al.1.


Asunto(s)
Drosophila , Partenogénesis , Animales
19.
Open Biol ; 13(1): 220325, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36630196

RESUMEN

Studies over the past decade have shown how stem cells representing embryonic and extra-embryonic tissues of the mouse can self-assemble in the culture dish to recapitulate an astonishing part of early embryonic development. A systematic analysis has demonstrated how pluripotent embryonic stem cells can be induced to behave like the implanting epiblast; how they can interact with trophectoderm stem cells to form a patterned structure resembling the implanting embryo prior to gastrulation; and how the third stem cell type-extra-embryonic endoderm cells-can be incorporated to generate structures that undergo the cell movements and gene expression patterns of gastrulation. Moreover, such stem cell-derived embryo models can proceed to neurulation and establish progenitors for all parts of the brain and neural tube, somites, beating heart structures and gut tube. They develop within extra-embryonic yolk sacs that initiate haematopoiesis. Here we trace this journey of discovery.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Embarazo , Femenino , Ratones , Animales , Endodermo/metabolismo , Células Madre Embrionarias/metabolismo , Encéfalo , Diferenciación Celular
20.
Curr Biol ; 33(17): 3545-3560.e13, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37516115

RESUMEN

Facultative parthenogenesis enables sexually reproducing organisms to switch between sexual and asexual parthenogenetic reproduction. To gain insights into this phenomenon, we sequenced the genomes of sexually reproducing and parthenogenetic strains of Drosophila mercatorum and identified differences in the gene expression in their eggs. We then tested whether manipulating the expression of candidate gene homologs identified in Drosophila mercatorum could lead to facultative parthenogenesis in the non-parthenogenetic species Drosophila melanogaster. This identified a polygenic system whereby increased expression of the mitotic protein kinase polo and decreased expression of a desaturase, Desat2, caused facultative parthenogenesis in the non-parthenogenetic species that was enhanced by increased expression of Myc. The genetically induced parthenogenetic Drosophila melanogaster eggs exhibit de novo centrosome formation, fusion of the meiotic products, and the onset of development to generate predominantly triploid offspring. Thus, we demonstrate a genetic basis for sporadic facultative parthenogenesis in an animal.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/genética , Partenogénesis/genética , Centrosoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA