Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microorganisms ; 11(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37764028

RESUMEN

The demand for novel antimicrobial compounds is rapidly growing due to the rising appearance of antibiotic resistance in bacteria; accordingly, alternative approaches are urgently needed. Antimicrobial peptides (AMPs) are promising, since they are a naturally occurring part of the innate immune system and display remarkable broad-spectrum activity and high selectivity against various microbes. Marine invertebrates are a primary resource of natural AMPs. Consequently, cDNA expression (EST) libraries from the Cnidarian moon jellyfish Aurelia aurita and the Ctenophore comb jelly Mnemiopsis leidyi were constructed in Escherichia coli. Cell-free size-fractionated cell extracts (<3 kDa) of the two libraries (each with 29,952 clones) were consecutively screened for peptides preventing the biofilm formation of opportunistic pathogens using the crystal violet assay. The 3 kDa fraction of ten individual clones demonstrated promising biofilm-preventing activities against Klebsiella oxytoca and Staphylococcus epidermidis. Sequencing the respective activity-conferring inserts allowed for the identification of small ORFs encoding peptides (10-22 aa), which were subsequently chemically synthesized to validate their inhibitory potential. Although the peptides are likely artificial products from a random translation of EST inserts, the biofilm-preventing effects against K. oxytoca, Pseudomonas aeruginosa, S. epidermidis, and S. aureus were verified for five synthetic peptides in a concentration-dependent manner, with peptide BiP_Aa_5 showing the strongest effects. The impact of BiP_Aa_2, BiP_Aa_5, and BiP_Aa_6 on the dynamic biofilm formation of K. oxytoca was further validated in microfluidic flow cells, demonstrating a significant reduction in biofilm thickness and volume by BiP_Aa_2 and BiP_Aa_5. Overall, the structural characteristics of the marine invertebrate-derived AMPs, their physicochemical properties, and their promising antibiofilm effects highlight them as attractive candidates for discovering new antimicrobials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA