Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 70(6): 1111-1120.e3, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932903

RESUMEN

Gene transcription is carried out by multi-subunit RNA polymerases (RNAPs). Transcription initiation is a dynamic multi-step process that involves the opening of the double-stranded DNA to form a transcription bubble and delivery of the template strand deep into the RNAP for RNA synthesis. Applying cryoelectron microscopy to a unique transcription system using σ54 (σN), the major bacterial variant sigma factor, we capture a new intermediate state at 4.1 Å where promoter DNA is caught at the entrance of the RNAP cleft. Combining with new structures of the open promoter complex and an initial de novo transcribing complex at 3.4 and 3.7 Å, respectively, our studies reveal the dynamics of DNA loading and mechanism of transcription bubble stabilization that involves coordinated, large-scale conformational changes of the universally conserved features within RNAP and DNA. In addition, our studies reveal a novel mechanism of strand separation by σ54.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Iniciación de la Transcripción Genética/fisiología , Bacterias/genética , Microscopía por Crioelectrón/métodos , ADN , ADN Bacteriano/genética , Escherichia coli/genética , Modelos Moleculares , Regiones Promotoras Genéticas/genética , Unión Proteica , Conformación Proteica , Factor sigma/genética , Sitio de Iniciación de la Transcripción/fisiología , Transcripción Genética/genética
2.
Mol Cell ; 67(1): 106-116.e4, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28579332

RESUMEN

Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo.


Asunto(s)
ADN de Cadena Simple/metabolismo , Escherichia coli/enzimología , Klebsiella pneumoniae/enzimología , Desnaturalización de Ácido Nucleico , ARN Polimerasa Sigma 54/metabolismo , Iniciación de la Transcripción Genética , Sitios de Unión , Microscopía por Crioelectrón , ADN de Cadena Simple/genética , ADN de Cadena Simple/ultraestructura , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/genética , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , ARN Polimerasa Sigma 54/genética , ARN Polimerasa Sigma 54/ultraestructura , Relación Estructura-Actividad
3.
Biochem J ; 473(21): 3741-3753, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27789741

RESUMEN

Transcription initiation is highly regulated in bacterial cells, allowing adaptive gene regulation in response to environment cues. One class of promoter specificity factor called sigma54 enables such adaptive gene expression through its ability to lock the RNA polymerase down into a state unable to melt out promoter DNA for transcription initiation. Promoter DNA opening then occurs through the action of specialized transcription control proteins called bacterial enhancer-binding proteins (bEBPs) that remodel the sigma54 factor within the closed promoter complexes. The remodelling of sigma54 occurs through an ATP-binding and hydrolysis reaction carried out by the bEBPs. The regulation of bEBP self-assembly into typically homomeric hexamers allows regulated gene expression since the self-assembly is required for bEBP ATPase activity and its direct engagement with the sigma54 factor during the remodelling reaction. Crystallographic studies have now established that in the closed promoter complex, the sigma54 factor occupies the bacterial RNA polymerase in ways that will physically impede promoter DNA opening and the loading of melted out promoter DNA into the DNA-binding clefts of the RNA polymerase. Large-scale structural re-organizations of sigma54 require contact of the bEBP with an amino-terminal glutamine and leucine-rich sequence of sigma54, and lead to domain movements within the core RNA polymerase necessary for making open promoter complexes and synthesizing the nascent RNA transcript.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , ARN Polimerasa Sigma 54/genética , ARN Polimerasa Sigma 54/metabolismo
4.
Methods Enzymol ; 592: 159-186, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28668120

RESUMEN

DNA repair complexes play crucial roles in maintaining genome integrity, which is essential for the survival of an organism. The understanding of their modes of action is often obscure due to limited structural knowledge. Structural characterizations of these complexes are often challenging due to a poor protein production yield, a conformational flexibility, and a relatively high molecular mass. Single-particle electron microscopy (EM) has been successfully applied to study some of these complexes as it requires low amount of samples, is not limited by the high molecular mass of a protein or a complex, and can separate heterogeneous assemblies. Recently, near-atomic resolution structures have been obtained with EM owing to the advances in technology and image processing algorithms. In this chapter, we review the EM methodology of obtaining three-dimensional reconstructions of macromolecular complexes and provide a workflow that can be applied to DNA repair complex assemblies.


Asunto(s)
Enzimas Reparadoras del ADN/química , Microscopía Electrónica/métodos , Animales , Microscopía por Crioelectrón/métodos , Reparación del ADN , Enzimas Reparadoras del ADN/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Coloración Negativa/métodos , Conformación Proteica
5.
Science ; 349(6250): 882-5, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26293966

RESUMEN

Transcription by RNA polymerase (RNAP) in bacteria requires specific promoter recognition by σ factors. The major variant σ factor (σ(54)) initially forms a transcriptionally silent complex requiring specialized adenosine triphosphate-dependent activators for initiation. Our crystal structure of the 450-kilodalton RNAP-σ(54) holoenzyme at 3.8 angstroms reveals molecular details of σ(54) and its interactions with RNAP. The structure explains how σ(54) targets different regions in RNAP to exert its inhibitory function. Although σ(54) and the major σ factor, σ(70), have similar functional domains and contact similar regions of RNAP, unanticipated differences are observed in their domain arrangement and interactions with RNAP, explaining their distinct properties. Furthermore, we observe evolutionarily conserved regulatory hotspots in RNAPs that can be targeted by a diverse range of mechanisms to fine tune transcription.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica , ARN Polimerasa Sigma 54/química , Transcripción Genética , Cristalografía por Rayos X , Estabilidad de Enzimas , Holoenzimas/química , Conformación Proteica , Estructura Terciaria de Proteína , ARN Polimerasa Sigma 54/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA