Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685847

RESUMEN

Metallic nanoparticles (mNPs) are widely used as food additives and can interact with gliadin triggering an immune response, but evaluation of the effects on crypts, hypertrophic in celiac subjects, is still lacking. This study evaluated the effects of gold and silver mNPs in combination with gliadin on crypt-like cells (HIEC-6). Transmission electron microscopy (TEM) was used to evaluate gliadin-mNP aggregates in cells. Western blot and immunofluorescence analysis assessed autophagy-related molecule levels (p62, LC3, beclin-1, EGFR). Lysosome functionality was tested with acridine orange (AO) and Magic Red assays. TEM identified an increase in autophagic vacuoles after exposure to gliadin + mNPs, as also detected by significant increments in LC3-II and p62 expression. Immunofluorescence confirmed the presence of mature autophagosomes, showing LC3 and p62 colocalization, indicating an altered autophagic flux, further assessed with EGFR degradation, AO and Magic Red assays. The results showed a significant reduction in lysosomal enzyme activity and a modest reduction in acidity. Thus, gliadin + mNPs can block the autophagic flux inducing a lysosomal defect. The alteration of this pathway, essential for cell function, can lead to cell damage and death. The potential effects of this copresence in food should be further characterized to avoid a negative impact on celiac disease subjects.


Asunto(s)
Oro , Nanopartículas , Humanos , Glútenes , Plata , Gliadina , Autofagia , Naranja de Acridina , Receptores ErbB
2.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37628929

RESUMEN

Nonalcoholic fatty liver disease (NAFLD, including nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH)) is a high-prevalence disorder, affecting about 1 billion people, which can evolve to more severe conditions like cirrhosis or hepatocellular carcinoma. NAFLD is often concomitant with conditions of the metabolic syndrome, such as central obesity and insulin-resistance, but a specific drug able to revert NAFL and prevent its evolution towards NASH is still lacking. With the liver being a key organ in metabolic processes, the potential therapeutic strategies are many, and range from directly targeting the lipid metabolism to the prevention of tissue inflammation. However, side effects have been reported for the drugs tested up to now. In this review, different approaches to the treatment of NAFLD are presented, including newer therapies and ongoing clinical trials. Particular focus is placed on the reverse cholesterol transport system and on the agonists for nuclear factors like PPAR and FXR, but also drugs initially developed for other conditions such as incretins and thyromimetics along with validated natural compounds that have anti-inflammatory potential. This work provides an overview of the different therapeutic strategies currently being tested for NAFLD, other than, or along with, the recommendation of weight loss.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Metabolismo de los Lípidos , Transporte Biológico
3.
Nanomedicine ; 40: 102497, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34838993

RESUMEN

Avidin-Nucleic-Acid-NanoASsemblies (ANANAS) possess natural tropism for the liver and, when loaded with dexamethasone, reduce clinical progression in an autoimmune hepatitis murine model. Here, we investigated the linker chemistry (hydrazide-hydrazone, Hz-Hz, or carbamate hydrazide-hydrazone, Cb-Hz bond) and length (long, 5 kDa PEG, or short, 5-6 carbons) in biotin-dexamethasone conjugates used for nanoparticle decoration through in vitro and in vivo studies. All four newly synthesized conjugates released the drug at acidic pH only. In vitro, the Hz-Hz and the PEG derivatives were less stable than the Cb-Hz and the short chain ones, respectively. Once injected in healthy mice, dexamethasone location in the PEGylated ANANAS outer layer favors liver penetration and resident macrophages uptake, while drug Hz-Hz, but not Cb-Hz, short spacing prolongs drug availability. In conclusion, the tight modulation of ANANAS decoration can significantly influence the host interaction, paving the way for the development of steroid nanoformulations suitable for different pharmacokinetic profiles.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Animales , Avidina , Dexametasona/farmacología , Ratones , Nanopartículas/química , Ácidos Nucleicos/química , Polietilenglicoles/química , Distribución Tisular
4.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35457155

RESUMEN

The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Administración Oral , Aditivos Alimentarios , Tracto Gastrointestinal , Absorción Intestinal , Intestinos
5.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198897

RESUMEN

The introduction of metallic nanoparticles (mNPs) into the diet is a matter of concern for human health. In particular, their effect on the gastrointestinal tract may potentially lead to the increased passage of gluten peptides and the activation of the immune response. In consequence, dietary mNPs could play a role in the increasing worldwide celiac disease (CeD) incidence. We evaluated the potential synergistic effects that peptic-tryptic-digested gliadin (PT) and the most-used food mNPs may induce on the intestinal mucosa. PT interaction with mNPs and their consequent aggregation was detected by transmission electron microscopy (TEM) analyses and UV-Vis spectra. In vitro experiments on Caco-2 cells proved the synergistic cytotoxic effect of PT and mNPs, as well as alterations in the monolayer integrity and tight junction proteins. Exposure of duodenal biopsies to gliadin plus mNPs triggered cytokine production, but only in CeD biopsies. These results suggest that mNPs used in the food sector may alter intestinal homeostasis, thus representing an additional environmental risk factor for the development of CeD.


Asunto(s)
Enfermedad Celíaca/dietoterapia , Dieta , Glútenes/metabolismo , Nanopartículas/uso terapéutico , Biopsia , Células CACO-2 , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/patología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Homeostasis/inmunología , Humanos , Inmunidad/efectos de los fármacos , Inmunidad/inmunología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Nanopartículas/metabolismo , Triticum/efectos adversos
6.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525473

RESUMEN

Celiac disease (CD) is an autoimmune enteropathy arising in genetically predisposed subjects exposed to gluten, which activates both innate and adaptive immunity. Although the pathogenesis is common to all patients, the clinical spectrum is quite variable, and differences could be explained by gene expression variations. Among the factors able to affect gene expression, there are lncRNAs. We evaluated the expression profile of 87 lncRNAs in CD vs. healthy control (HC) intestinal biopsies by RT-qPCR array. Nuclear enriched abundant transcript 1 (NEAT1) and taurine upregulated gene 1 (TUG1) were detected as downregulated in CD patients at diagnosis, but their expression increased in biopsies of patients on a gluten-free diet (GFD) exposed to gluten. The increase in NEAT1 expression after gluten exposure was mediated by IL-15 and STAT3 activation and binding to the NEAT1 promoter, as demonstrated by gel shift assay. NEAT1 is localized in the nucleus and can regulate gene expression by sequestering transcription factors, and it has been implicated in immune regulation and control of cell proliferation. The demonstration of its regulation by gluten thus also supports the role of lncRNAs in CD and prompts further research on these RNAs as gene expression regulators.


Asunto(s)
Enfermedad Celíaca/genética , Regulación hacia Abajo , Duodeno/química , Gliadina/efectos adversos , ARN Largo no Codificante/genética , Adulto , Estudios de Casos y Controles , Enfermedad Celíaca/inmunología , Proliferación Celular , Células Cultivadas , Niño , Regulación hacia Abajo/efectos de los fármacos , Duodeno/inmunología , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Interleucina-15/genética , Mucosa Intestinal/química , Mucosa Intestinal/inmunología , Masculino , Factor de Transcripción STAT3/genética
7.
World J Gastroenterol ; 28(4): 449-463, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35125829

RESUMEN

Celiac disease (CeD) is a multifactorial autoimmune disorder spread worldwide. The exposure to gluten, a protein found in cereals like wheat, barley and rye, is the main environmental factor involved in its pathogenesis. Even if the genetic predisposition represented by HLA-DQ2 or HLA-DQ8 haplotypes is widely recognised as mandatory for CeD development, it is not enough to explain the total predisposition for the disease. Furthermore, the onset of CeD comprehend a wide spectrum of symptoms, that often leads to a delay in CeD diagnosis. To overcome this deficiency and help detecting people with increased risk for CeD, also clarifying CeD traits linked to disease familiarity, different studies have tried to make light on other predisposing elements. These were in many cases genetic variants shared with other autoimmune diseases. Since inherited traits can be regulated by epigenetic modifications, also induced by environmental factors, the most recent studies focused on the potential involvement of epigenetics in CeD. Epigenetic factors can in fact modulate gene expression with many mechanisms, generating more or less stable changes in gene expression without affecting the DNA sequence. Here we analyze the different epigenetic modifications in CeD, in particular DNA methylation, histone modifications, non-coding RNAs and RNA methylation. Special attention is dedicated to the additional predispositions to CeD, the involvement of epigenetics in developing CeD complications, the pathogenic pathways modulated by epigenetic factors such as microRNAs and the potential use of epigenetic profiling as biomarker to discriminate different classes of patients.


Asunto(s)
Enfermedad Celíaca , MicroARNs , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/genética , Epigénesis Genética , Predisposición Genética a la Enfermedad , Glútenes , Humanos , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA