RESUMEN
The presented research was intended to seek new optical methods to investigate the demineralization process of bones. Optical examination of the bone condition could facilitate clinical trials and improve the safety of patients. The authors used a set of complementary methods: polarization-sensitive optical coherence tomography (PS-OCT) and Raman spectroscopy. Chicken bone samples were used in this research. To stimulate in laboratory conditions the process of demineralization and gradual removal of the hydroxyapatite, the test samples of bones were placed into 10% acetic acid. Measurements were carried out in two series. The first one took two weeks with data acquired every day. In the second series, the measurements were made during one day at an hourly interval (after 1, 2, 3, 5, 7, 10, and 24 h). The relation between the content of hydroxyapatite and images recorded using OCT was analyzed and discussed. Moreover, the polarization properties of the bones, including retardation angles of the bones, were evaluated. Raman measurement confirmed the disappearance of the hydroxyapatite and the speed of this process. This work presents the results of the preliminary study on the possibility of measuring changes in bone mineralization by means of the proposed methods and confirms their potential for practical use in the future.
Asunto(s)
Espectrometría Raman , Tomografía de Coherencia Óptica , HumanosRESUMEN
The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.
RESUMEN
We report a method of growing a boron-doped diamond film by plasma-assisted chemical vapour deposition utilizing a pre-treatment of GaN substrate to give a high density of nucleation. CVD diamond was deposited on GaN substrate grown epitaxially via the molecular-beam epitaxy process. To obtain a continuous diamond film with the presence of well-developed grains, the GaN substrates are exposed to hydrogen plasma prior to deposition. The diamond/GaN heterojunction was deposited in methane ratio, chamber pressure, temperature, and microwave power at 1%, 50 Torr, 500 °C, and 1100 W, respectively. Two samples with different doping were prepared 2000 ppm and 7000 [B/C] in the gas phase. SEM and AFM analyses revealed the presence of well-developed grains with an average size of 100 nm. The epitaxial GaN substrate-induced preferential formation of (111)-facetted diamond was revealed by AFM and XRD. After the deposition process, the signal of the GaN substrate is still visible in Raman spectroscopy (showing three main GaN bands located at 565, 640 and 735 cm-1) as well as in typical XRD patterns. Analysis of the current-voltage characteristics as a function of temperature yielded activation energy equal to 93.8 meV.
RESUMEN
In this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3-/4- redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted chemical vapor deposition (CVD) using a gas mixture of H2/CH4/B2H6 and N2. Growth results in sharp-edged, flat, and long CNWs rich in sp2 as well as sp3 hybridized phases. The achieved high values of k° (1.1 × 10-2 cm s-1) and ΔE (85 mV) are much lower compared to those of the glassy carbon or undoped CNWs. The enhanced electrochemical performance of the B:CNW electrode facilitates the simultaneous detection of DNA purine bases: adenine and guanine. Both separated oxidation peaks for the independent determination of guanine and adenine were observed by means of cyclic voltammetry or differential pulse voltammetry. It is worth noting that the determined sensitivities and the current densities were about 1 order of magnitude higher than those registered by other electrodes.
RESUMEN
Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP expression was highest for the uncoated substrate.