Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 548, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238028

RESUMEN

BACKGROUND: Bacterial extracellular vesicles (EVs) are pivotal mediators of intercellular communication and influence host cell biology, thereby contributing to the pathogenesis of infections. Despite their significance, the precise effects of bacterial EVs on the host cells remain poorly understood. This study aimed to elucidate ultrastructural changes in host cells upon infection with EVs derived from a pathogenic bacterium, Staphylococcus aureus (S. aureus). RESULTS: Using super-resolution fluorescence microscopy and high-voltage electron microscopy, we investigated the nanoscale alterations in mitochondria, endoplasmic reticulum (ER), Golgi apparatus, lysosomes, and microtubules of skin cells infected with bacterial EVs. Our results revealed significant mitochondrial fission, loss of cristae, transformation of the ER from tubular to sheet-like structures, and fragmentation of the Golgi apparatus in cells infected with S. aureus EVs, in contrast to the negligible effects observed following S. epidermidis EV infection, probably due to the pathogenic factors in S. aureus EV, including protein A and enterotoxin. These findings indicate that bacterial EVs, particularly those from pathogenic strains, induce profound ultrastructural changes of host cells that can disrupt cellular homeostasis and contribute to infection pathogenesis. CONCLUSIONS: This study advances the understanding of bacterial EV-host cell interactions and contributes to the development of new diagnostic and therapeutic strategies for bacterial infections.


Asunto(s)
Vesículas Extracelulares , Staphylococcus aureus , Vesículas Extracelulares/metabolismo , Humanos , Aparato de Golgi/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Microtúbulos/metabolismo , Lisosomas/metabolismo , Lisosomas/microbiología , Interacciones Huésped-Patógeno , Infecciones Estafilocócicas/microbiología , Microscopía Fluorescente , Staphylococcus epidermidis/fisiología
2.
Angew Chem Int Ed Engl ; 63(27): e202405246, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38622700

RESUMEN

Single-molecule localization microscopy (SMLM) has revolutionized optical microscopy by exceeding the diffraction limit and revealing previously unattainable nanoscale details of cellular structures and molecular dynamics. This super-resolution imaging capability relies on fluorophore photoswitching, which is crucial for optimizing the imaging conditions and accurately determining the fluorophore positions. To understand the general on and off photoswitching mechanisms of single dye molecules, various photoswitching reagents were evaluated. Systematic measurement of the single-molecule-level fluorescence on and off rates (kon and koff) in the presence of various photoswitching reagents and theoretical calculation of the structure of the photoswitching reagent-fluorophore pair indicated that the switch-off mechanism is mainly determined by the nucleophilicity of the photoswitching reagent, and the switch-on mechanism is a two-photon-induced dissociation process, which is related to the power of the illuminating laser and bond dissociation energy of this pair. This study contributes to a broader understanding of the molecular photoswitching mechanism in SMLM imaging and provides a basis for designing improved photoswitching reagents with potential applications extending to materials science and chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA