Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 143(3): 367-78, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21029860

RESUMEN

ATRX is an X-linked gene of the SWI/SNF family, mutations in which cause syndromal mental retardation and downregulation of α-globin expression. Here we show that ATRX binds to tandem repeat (TR) sequences in both telomeres and euchromatin. Genes associated with these TRs can be dysregulated when ATRX is mutated, and the change in expression is determined by the size of the TR, producing skewed allelic expression. This reveals the characteristics of the affected genes, explains the variable phenotypes seen with identical ATRX mutations, and illustrates a new mechanism underlying variable penetrance. Many of the TRs are G rich and predicted to form non-B DNA structures (including G-quadruplex) in vivo. We show that ATRX binds G-quadruplex structures in vitro, suggesting a mechanism by which ATRX may play a role in various nuclear processes and how this is perturbed when ATRX is mutated.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Cromosomas de los Mamíferos/metabolismo , Islas de CpG , ADN Helicasas/genética , ADN Ribosómico/metabolismo , G-Cuádruplex , Expresión Génica , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Ratones , Repeticiones de Minisatélite , Mutación , Proteínas Nucleares/genética , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma X
2.
Nano Lett ; 24(15): 4471-4477, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587318

RESUMEN

van der Waals magnets are emerging as a promising material platform for electric field control of magnetism, offering a pathway toward the elimination of external magnetic fields from spintronic devices. A further step is the integration of such magnets with electrical gating components that would enable nonvolatile control of magnetic states. However, this approach remains unexplored for antiferromagnets, despite their growing significance in spintronics. Here, we demonstrate nonvolatile electric field control of magnetoelectric characteristics in van der Waals antiferromagnet CrSBr. We integrate a CrSBr channel in a flash-memory architecture featuring charge trapping graphene multilayers. The electrical gate operation triggers a nonvolatile 200% change in the antiferromagnetic state of CrSBr resistance by manipulating electron accumulation/depletion. Moreover, the nonvolatile gate modulates the metamagnetic transition field of CrSBr and the magnitude of magnetoresistance. Our findings highlight the potential of manipulating magnetic properties of antiferromagnetic semiconductors in a nonvolatile way.

3.
Haematologica ; : 0, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157875

RESUMEN

The introduction of pediatric-inspired regimens in adult Philadelphia-negative acute lymphoblastic leukemia (Ph-ALL) has significantly improved patients' prognosis. Within the Campus ALL network we analyzed the outcome of adult Ph-ALL patients treated according to the GIMEMA LAL1913 protocol outside the clinical trial, to compare the real-life data with the study results. We included 421 consecutive patients, with a median age of 42 years. The complete remission (CR) rate after the first course of chemotherapy was 94% and a measurable residual disease (MRD) negativity after the third course was achieved in 72% of patients. The 3-year overall survival (OS) and disease-free survival (DFS) were 67% and 57%, respectively. In a multivariate analysis, MRD positivity negatively influenced DFS. In a time-dependent analysis including only very high risk (VHR) and MRD positive cases, transplanted (HSCT) patients had a significantly better DFS than non-HSCT ones (P=0.0017). During induction, grade ≥2 pegaspargase-related hepato-toxicity was observed in 25% of patients (vs 12% in the GIMEMA LAL1913 trial, P=0.0003). In this large real-life cohort of Ph-ALL, we confirmed the very high CR rate and a superimposable OS and DFS compared to the GIMEMA LAL1913 clinical trial: CR rate after C1 94% vs 85%, P=0.0004; 3-year OS 67% vs 67%, P=0.94; 3-year DFS 57% vs 63%, P=0.17. HSCT confirms its important role in VHR and MRD-positive patients. The rate of pegaspargase-related toxicity was significantly higher in the real-life setting, emphasizing the importance of dose adjustment in the presence of risk factors to avoid excessive toxicity.

4.
Phys Rev Lett ; 132(4): 046303, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335368

RESUMEN

Electrical transport in noncentrosymmetric materials departs from the well-established phenomenological Ohm's law. Instead of a linear relation between current and electric field, a nonlinear conductivity emerges along specific crystallographic directions. This nonlinear transport is fundamentally related to the lack of spatial inversion symmetry. However, the experimental implications of an inversion symmetry operation on the nonlinear conductivity remain to be explored. Here, we report on a large, nonlinear conductivity in chiral tellurium. By measuring samples with opposite handedness, we demonstrate that the nonlinear transport is odd under spatial inversion. Furthermore, by applying an electrostatic gate, we modulate the nonlinear output by a factor of 300, reaching the highest reported value excluding engineered heterostructures. Our results establish chiral tellurium as an ideal compound not just to study the fundamental interplay between crystal structure, symmetry operations and nonlinear transport; but also to develop wireless rectifiers and energy-harvesting chiral devices.

5.
Chem Rev ; 122(1): 50-131, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34816723

RESUMEN

Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.


Asunto(s)
Óxidos , Semiconductores , Electrodos , Electrónica , Metales/química , Óxidos/química
6.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39076010

RESUMEN

AIMS: To investigate enterococci carrying linezolid and vancomycin resistance genes from fecal samples recovered from wild boars. METHODS AND RESULTS: Florfenicol- and vancomycin-resistant enterococci, isolated on selective agar plates, were screened by PCR for the presence of linezolid and vancomycin resistance genes. Five isolates carried optrA or poxtA linezolid resistance genes; one strain was resistant to vancomycin for the presence of vanA gene. All isolates were tested for their antibiotic susceptibility and subjected to Whole Genome Sequencing (WGS) analysis. In Enterococcus faecalis (E. faecalis) V1344 and V1676, the optrA was located on the new pV1344-optrA and pV1676-optrA plasmids, respectively, whereas in Enterococcus faecium (E. faecium) V1339 this gene was on a 22 354-bp chromosomal genetic context identical to the one detected in a human E. faecium isolate. In both E. faecium V1682 and E. durans V1343, poxtA was on the p1818-c plasmid previously found in a human E. faecium isolate. In E. faecium V1328, the vanA gene was on the Tn1546 transposon in turn located on a new pV1328-vanA plasmid. Only E. faecium V1682 successfully transferred the poxtA gene to an enterococcal recipient in filter mating assays. CONCLUSIONS: The occurrence of genetic elements carrying linezolid and vancomycin resistance genes in enterococci from wild boars is a matter of concern, moreover, the sharing of plasmids and transposons between isolates from wild animals, human, and environment indicates an exchange of genetic material between these settings.


Asunto(s)
Proteínas Bacterianas , Farmacorresistencia Bacteriana , Enterococcus faecalis , Enterococcus faecium , Sus scrofa , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Ligasas de Carbono-Oxígeno/genética , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/genética , Enterococcus faecalis/aislamiento & purificación , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecium/genética , Enterococcus faecium/aislamiento & purificación , Enterococcus faecium/efectos de los fármacos , Heces/microbiología , Genoma Bacteriano , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/veterinaria , Italia , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Sus scrofa/microbiología , Resistencia a la Vancomicina/genética , Secuenciación Completa del Genoma
7.
BMC Vet Res ; 20(1): 9, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172819

RESUMEN

BACKGROUND: The only natural hosts of Pseudorabies virus (PRV) are members of the family Suidae (Sus scrofa scrofa). In mammals, the infection is usually fatal and typically causes serious neurologic disease. This study describes four Aujeszky's disease cases in free-ranging Italian wolves (Canis lupus italicus). In Italy, the wolf is a strictly protected species and is in demographic expansion. CASE PRESENTATION: Three wolves (Wolf A, B, and C) were found in a regional park in Northern Italy, and one (Wolf D) was found in Central Italy. Wolf A and D were alive at the time of the finding and exhibited a fatal infection with epileptic seizures and dyspnoea, dying after a few hours. Wolf B presented scratching lesions under the chin and a detachment of the right earlobe, whilst Wolf C was partially eaten. The wolves showed hepatic congestion, diffuse enteritis, moderate pericardial effusion, severe bilateral pneumonia, and diffuse hyperaemia in the brain. The diagnostic examinations included virological analyses and detection of toxic molecules able to cause serious neurological signs. All four wolves tested positive for pseudorabies virus (PrV). The analysed sequences were placed in Italian clade 1, which is divided into two subclades, "a" and "b". The sequences of Wolf A, B, and C were closely related to other Italian sequences in the subclade b, originally obtained from wild boars and hunting dogs. The sequence from Wolf D was located within the same clade and was closely related to the French hunting dog sequences belonging to group 4. CONCLUSION: Results showed the presence of PrV strains currently circulating in wild boars and free-ranging Italian wolves. The genetic characterisation of the PrV UL44 sequences from the four wolves confirmed the close relationship with the sequences from wild boars and hunting dogs. This fact supports a possible epidemiological link with the high PrV presence in wild boars and the possibility of infection in wolves through consumption of infected wild boar carcasses or indirect transmission. To the best of our knowledge, this study is the first detection of Pseudorabies virus in free-ranging Italian wolves in northern and central Italy.


Asunto(s)
Enfermedades de los Perros , Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Lobos , Perros , Animales , Porcinos , Herpesvirus Suido 1/genética , Seudorrabia/diagnóstico , Seudorrabia/epidemiología , Seudorrabia/patología , Italia/epidemiología , Sus scrofa
8.
Nano Lett ; 23(10): 4406-4414, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37140909

RESUMEN

Graphene is a light material for long-distance spin transport due to its low spin-orbit coupling, which at the same time is the main drawback for exhibiting a sizable spin Hall effect. Decoration by light atoms has been predicted to enhance the spin Hall angle in graphene while retaining a long spin diffusion length. Here, we combine a light metal oxide (oxidized Cu) with graphene to induce the spin Hall effect. Its efficiency, given by the product of the spin Hall angle and the spin diffusion length, can be tuned with the Fermi level position, exhibiting a maximum (1.8 ± 0.6 nm at 100 K) around the charge neutrality point. This all-light-element heterostructure shows a larger efficiency than conventional spin Hall materials. The gate-tunable spin Hall effect is observed up to room temperature. Our experimental demonstration provides an efficient spin-to-charge conversion system free from heavy metals and compatible with large-scale fabrication.

9.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000338

RESUMEN

Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR signaling toward tumor antigen binding. However, conventional in vitro and in vivo biological approaches to compare different scFv-derived CARs are expensive and labor-intensive. With the aim to predict the finest scFv binding before CAR-T cell engineering, we performed artificial intelligence (AI)-guided molecular docking and steered molecular dynamics analysis of different anti-CD30 mAb clones. Virtual computational scFv screening showed comparable results to surface plasmon resonance (SPR) and functional CAR-T cell in vitro and in vivo assays, respectively, in terms of binding capacity and anti-tumor efficacy. The proposed fast and low-cost in silico analysis has the potential to advance the development of novel CAR constructs, with a substantial impact on reducing time, costs, and the need for laboratory animal use.


Asunto(s)
Inteligencia Artificial , Antígeno Ki-1 , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptores Quiméricos de Antígenos , Anticuerpos de Cadena Única , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Humanos , Antígeno Ki-1/inmunología , Antígeno Ki-1/metabolismo , Animales , Ratones , Unión Proteica , Resonancia por Plasmón de Superficie
10.
Small ; 19(42): e2303238, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37330652

RESUMEN

Graphene and related 2D material (GRM) thin films consist of 3D assembly of billions of 2D nanosheets randomly distributed and interacting via van der Waals forces. Their complexity and the multiscale nature yield a wide variety of electrical characteristics ranging from doped semiconductor to glassy metals depending on the crystalline quality of the nanosheets, their specific structural organization ant the operating temperature. Here, the charge transport (CT) mechanisms are studied that are occurring in GRM thin films near the metal-insulator transition (MIT) highlighting the role of defect density and local arrangement of the nanosheets. Two prototypical nanosheet types are compared, i.e., 2D reduced graphene oxide and few-layer-thick electrochemically exfoliated graphene flakes, forming thin films with comparable composition, morphology and room temperature conductivity, but different defect density and crystallinity. By investigating their structure, morphology, and the dependence of their electrical conductivity on temperature, noise and magnetic-field, a general model is developed describing the multiscale nature of CT in GRM thin films in terms of hopping among mesoscopic bricks, i.e., grains. The results suggest a general approach to describe disordered van der Waals thin films.

11.
Nat Mater ; 21(5): 526-532, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35256792

RESUMEN

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.


Asunto(s)
Nanocables , Electricidad , Electricidad Estática , Estereoisomerismo , Telurio
12.
Anesthesiology ; 139(5): 628-645, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37487175

RESUMEN

BACKGROUND: The catabolism of the essential amino acid tryptophan to kynurenine is emerging as a potential key pathway involved in post-cardiac arrest brain injury. The aim of this study was to evaluate the effects of the modulation of kynurenine pathway on cardiac arrest outcome through genetic deletion of the rate-limiting enzyme of the pathway, indoleamine 2,3-dioxygenase. METHODS: Wild-type and indoleamine 2,3-dioxygenase-deleted (IDO-/-) mice were subjected to 8-min cardiac arrest. Survival, neurologic outcome, and locomotor activity were evaluated after resuscitation. Brain magnetic resonance imaging with diffusion tensor and diffusion-weighted imaging sequences was performed, together with microglia and macrophage activation and neurofilament light chain measurements. RESULTS: IDO-/- mice showed higher survival compared to wild-type mice (IDO-/- 11 of 16, wild-type 6 of 16, log-rank P = 0.036). Neurologic function was higher in IDO-/- mice than in wild-type mice after cardiac arrest (IDO-/- 9 ± 1, wild-type 7 ± 1, P = 0.012, n = 16). Indoleamine 2,3-dioxygenase deletion preserved locomotor function while maintaining physiologic circadian rhythm after cardiac arrest. Brain magnetic resonance imaging with diffusion tensor imaging showed an increase in mean fractional anisotropy in the corpus callosum (IDO-/- 0.68 ± 0.01, wild-type 0.65 ± 0.01, P = 0.010, n = 4 to 5) and in the external capsule (IDO-/- 0.47 ± 0.01, wild-type 0.45 ± 0.01, P = 0.006, n = 4 to 5) in IDO-/- mice compared with wild-type ones. Increased release of neurofilament light chain was observed in wild-type mice compared to IDO-/- (median concentrations [interquartile range], pg/mL: wild-type 1,138 [678 to 1,384]; IDO-/- 267 [157 to 550]; P < 0.001, n = 3 to 4). Brain magnetic resonance imaging with diffusion-weighted imaging revealed restriction of water diffusivity 24 h after cardiac arrest in wild-type mice; indoleamine 2,3-dioxygenase deletion prevented water diffusion abnormalities, which was reverted in IDO-/- mice receiving l-kynurenine (apparent diffusion coefficient, µm2/ms: wild-type, 0.48 ± 0.07; IDO-/-, 0.59 ± 0.02; IDO-/- and l-kynurenine, 0.47 ± 0.08; P = 0.007, n = 6). CONCLUSIONS: The kynurenine pathway represents a novel target to prevent post-cardiac arrest brain injury. The neuroprotective effects of indoleamine 2,3-dioxygenase deletion were associated with preservation of brain white matter microintegrity and with reduction of cerebral cytotoxic edema.


Asunto(s)
Lesiones Encefálicas , Indolamina-Pirrol 2,3,-Dioxigenasa , Animales , Ratones , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina , Imagen de Difusión Tensora , Agua
13.
Nano Lett ; 22(10): 4153-4160, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35435688

RESUMEN

Strain is an effective strategy to modulate the optoelectronic properties of 2D materials, but it has been almost unexplored in layered hybrid organic-inorganic metal halide perovskites (HOIPs) due to their complex band structure and mechanical properties. Here, we investigate the temperature-dependent microphotoluminescence (PL) of 2D (C6H5CH2CH2NH3)2Cs3Pb4Br13 HOIP subject to biaxial strain induced by a SiO2 ring platform on which flakes are placed by viscoelastic stamping. At 80 K, we found that a strain of <1% can change the PL emission from a single peak (unstrained) to three well-resolved peaks. Supported by micro-Raman spectroscopy, we show that the thermomechanically generated strain modulates the bandgap due to changes in the octahedral tilting and lattice expansion. Mechanical simulations demonstrate the coexistence of tensile and compressive strain along the flake. The observed PL peaks add an interesting feature to the rich phenomenology of photoluminescence in 2D HOIPs, which can be exploited in tailored sensing and optoelectronic devices.

14.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768584

RESUMEN

Splanchnic vein thrombosis is a rare but potentially life-threatening manifestation of venous thromboembolism, with challenging implications both at the pathological and therapeutic level. It is frequently associated with liver cirrhosis, but it could also be provoked by myeloproliferative disorders, cancer of various gastroenterological origin, abdominal infections and thrombophilia. A portion of splanchnic vein thrombosis is still classified as idiopathic. Here, we review the mechanisms of splanchnic vein thrombosis, including new insights on the role of clonal hematopoiesis in idiopathic SVT pathogenesis, with important implications from the therapeutic standpoint.


Asunto(s)
Trastornos Mieloproliferativos , Tromboembolia Venosa , Trombosis de la Vena , Humanos , Trombosis de la Vena/complicaciones , Trastornos Mieloproliferativos/complicaciones
15.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569522

RESUMEN

We developed and validated a technology platform for designing and testing peptides inhibiting the infectivity of SARS-CoV-2 spike protein-based pseudoviruses. This platform integrates target evaluation, in silico inhibitor design, peptide synthesis, and efficacy screening. We generated a cyclic peptide library derived from the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor. The cell-free validation process by ELISA competition assays and Surface Plasmon Resonance (SPR) studies revealed that the cyclic peptide c9_05, but not its linear form, binds well to ACE2. Moreover, it effectively inhibited the transduction in HEK293, stably expressing the human ACE2 receptor of pseudovirus particles displaying the SARS-CoV-2 spike in the Wuhan or UK variants. However, the inhibitory efficacy of c9_05 was negligible against the Omicron variant, and it failed to impede the entry of pseudoviruses carrying the B.1.351 (South African) spike. These variants contain three or more mutations known to increase affinity to ACE2. This suggests further refinement is needed for potential SARS-CoV-2 inhibition. Our study hints at a promising approach to develop inhibitors targeting viral infectivity receptors, including SARS-CoV-2's. This platform also promises swift identification and evaluation of inhibitors for other emergent viruses.


Asunto(s)
COVID-19 , Virus ARN , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Células HEK293 , Péptidos/farmacología , Péptidos Cíclicos , Biblioteca de Péptidos , Tecnología , Unión Proteica
16.
J Biol Chem ; 296: 100664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33865852

RESUMEN

The formation of neurofibrillary tangles and amyloid plaques accompanies the progression of Alzheimer's disease. Tangles are made of fibrillar aggregates formed by the microtubule-associated protein tau, whereas plaques comprise fibrillar forms of amyloid-beta (Aß). Both form toxic oligomers during aggregation and are thought to interact synergistically to each promote the accumulation of the other. Recent in vitro studies have suggested that the monomeric nonphosphorylated full-length tau protein hinders the aggregation of Aß1-40 peptide, but whether the same is true for the more aggregation-prone Aß1-42 was not determined. We used in vitro and in vivo techniques to explore this question. We have monitored the aggregation kinetics of Aß1-42 by thioflavine T fluorescence in the presence or the absence of different concentrations of nonphosphorylated tau. We observed that elongation of Aß1-42 fibrils was inhibited by tau in a dose-dependent manner. Interestingly, the fibrils were structurally different in the presence of tau but did not incorporate tau. Surface plasmon resonance indicated that tau monomers bound to Aß1-42 oligomers (but not monomers) and hindered their interaction with the anti-Aß antibody 4G8, suggesting that tau binds to the hydrophobic central core of Aß recognized by 4G8. Tau monomers also antagonized the toxic effects of Aß oligomers in Caenorhabditis elegans. This suggests that nonphosphorylated tau might have a neuroprotective effect by binding Aß1-42 oligomers formed during the aggregation and shielding their hydrophobic patches.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Amiloide/antagonistas & inhibidores , Caenorhabditis elegans/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/antagonistas & inhibidores , Proteínas tau/farmacología , Péptidos beta-Amiloides/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Humanos , Cinética , Larva/efectos de los fármacos , Fragmentos de Péptidos/toxicidad
17.
Nat Immunol ; 11(4): 328-34, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20208538

RESUMEN

Pentraxins are a superfamily of conserved proteins involved in the acute-phase response and innate immunity. Pentraxin 3 (PTX3), a prototypical member of the long pentraxin subfamily, is a key component of the humoral arm of innate immunity that is essential for resistance to certain pathogens. A regulatory role for pentraxins in inflammation has long been recognized, but the underlying mechanisms remain unclear. Here we report that PTX3 bound P-selectin and attenuated neutrophil recruitment at sites of inflammation. PTX3 released from activated leukocytes functioned locally to dampen neutrophil recruitment and regulate inflammation. Antibodies have glycosylation-dependent regulatory effect on inflammation. Therefore, PTX3, which is an essential component of humoral innate immunity, and immunoglobulins share functional outputs, including complement activation, opsonization and, as shown here, glycosylation-dependent regulation of inflammation.


Asunto(s)
Proteína C-Reactiva/inmunología , Inflamación/inmunología , Rodamiento de Leucocito/inmunología , Infiltración Neutrófila/inmunología , Componente Amiloide P Sérico/inmunología , Lesión Pulmonar Aguda/inmunología , Animales , Células CHO , Separación Celular , Cricetinae , Cricetulus , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Humanos , Inmunidad Humoral/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/inmunología
18.
Haematologica ; 107(4): 909-920, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34109776

RESUMEN

Shedding of ADAM10 substrates, like TNFa or CD30, can affect both anti-tumor immune response and antibody-drug-conjugate (ADC)-based immunotherapy. We have published two new ADAM10 inhibitors, LT4 and MN8 able to prevent such shedding in Hodgkin lymphoma (HL). Since tumor tissue architecture deeply influences the outcome of anti-cancer treatments, we set up a new threedimensional (3D) culture systems to verify whether ADAM10 inhibitors can contribute to, or enhance, the anti-lymphoma effects of the ADC brentuximab-vedotin (BtxVed). In order to recapitulate some aspects of lymphoma structure and architecture, we assembled two 3D culture models: mixed spheroids made of HL lymph node (LN) mesenchymal stromal cells (MSC) and Reed Sternberg/Hodgkin lymphoma cells (HL cells) or collagen scaffolds repopulated with LN-MSC and HL cells. In these 3D systems we found that: i) the ADAM10 inhibitors LT4 and MN8 reduce ATP content or glucose consumption, related to cell proliferation, increasing lactate dehydrogenase release as a cell damage hallmark; ii) these events are paralleled by mixed spheroids size reduction and inhibition of CD30 and TNFa shedding; iii) the effects observed can be reproduced in repopulated HL LN-derived matrix or collagen scaffolds; iv) ADAM10 inhibitors enhance the anti-lymphoma effect of the anti-CD30 ADC BtxVed both in conventional cultures and in repopulated scaffolds. Thus, we provide evidence for a direct and combined antilymphoma effect of ADAM10 inhibitors with BtxVed, leading to the improvement of ADC effects; this is documented in 3D models recapitulating features of the LN microenvironment, that can be proposed as a reliable tool for anti-lymphoma drug testing.


Asunto(s)
Proteína ADAM10/antagonistas & inhibidores , Brentuximab Vedotina/uso terapéutico , Enfermedad de Hodgkin , Inmunoconjugados , Linfoma , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/patología , Humanos , Inmunoconjugados/uso terapéutico , Antígeno Ki-1 , Linfoma/tratamiento farmacológico , Proteínas de la Membrana , Microambiente Tumoral
19.
Avian Pathol ; 51(4): 381-387, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35503252

RESUMEN

Perineuronal or neuronal satellitosis is the term describing the presence of glial cells in the satellite space surrounding the neuronal perikaryon. Confusingly, this finding has been described both as a physiologic and pathologic condition in humans and animals. In animals, neuronal satellitosis has been described in mammals, as well as in avian species. For the latter, the authors wondered whether neuronal satellitosis is expressed in the normal telencephalon of different avian orders and families and whether this pattern in different species shows a specific brain-region association. For these aims, this study explored the presence of neuronal satellitosis in the major areas of the healthy telencephalon in wild and domestic avian species of different orders and families, evaluating its grade in different brain regions. Neuronal satellitosis was seen in the hyperpallium and mesopallium as areas with the highest grade. Passeriformes showed the highest grade of neuronal satellitosis compared to diurnal or nocturnal raptors, and Charadriiformes. To clarify the exact role of neuronal satellitosis in animals without neurological disease, further studies are needed.RESEARCH HIGHLIGHTSNeuronal satellitosis is a common finding in the healthy avian telencephalon.Neuronal satellitosis is a species- and brain-region-associated finding in birds.Passeriformes have the highest grade of neuronal satellitosis.


Asunto(s)
Aves , Neuronas , Animales , Aves/anatomía & histología , Neuronas/fisiología , Telencéfalo/fisiología
20.
Nano Lett ; 21(1): 136-143, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33274947

RESUMEN

Two-dimensional transition metal dichalcogenides (TMDs) represent an ideal testbench for the search of materials by design, because their optoelectronic properties can be manipulated through surface engineering and molecular functionalization. However, the impact of molecules on intrinsic physical properties of TMDs, such as superconductivity, remains largely unexplored. In this work, the critical temperature (TC) of large-area NbSe2 monolayers is manipulated, employing ultrathin molecular adlayers. Spectroscopic evidence indicates that aligned molecular dipoles within the self-assembled layers act as a fixed gate terminal, collectively generating a macroscopic electrostatic field on NbSe2. This results in an ∼55% increase and a 70% decrease in TC depending on the electric field polarity, which is controlled via molecular selection. The reported functionalization, which improves the air stability of NbSe2, is efficient, practical, up-scalable, and suited to functionalize large-area TMDs. Our results indicate the potential of hybrid 2D materials as a novel platform for tunable superconductivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA