Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 15: 1401294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720899

RESUMEN

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Asunto(s)
Esfingolípidos , Animales , Humanos , Esfingolípidos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Fagocitosis , Fagocitos/inmunología , Fagocitos/metabolismo , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Membrana Celular/metabolismo , Unión Proteica
2.
Cell Stem Cell ; 31(8): 1145-1161.e15, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772377

RESUMEN

Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.


Asunto(s)
Adenosina Trifosfato , Células Madre Hematopoyéticas , Mitocondrias , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Animales , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Ratones , Senescencia Celular , Ratones Endogámicos C57BL , Glucólisis , Envejecimiento/metabolismo , Estrés Oxidativo
3.
Elife ; 122024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573813

RESUMEN

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Asunto(s)
Glucólisis , Fosfofructoquinasa-2 , Animales , Ratones , Adenosina Trifosfato/metabolismo , Anaerobiosis , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Fosforilación Oxidativa , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA