Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Appl Clin Med Phys ; 24(4): e13861, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36478148

RESUMEN

The purpose of this study is to investigate the dosimetric accuracy of prostate SBRT when motion is considered. To account for target movement, motion compensation and gating techniques were investigated with PTV margins reduced to 2 mm. To allow for dosimetric measurements a Delta4 phantom, Gafchromic film, and Hexamotion motion platform were utilized. Four motion files were utilized that represent a range of motions. Analysis of measured prostate motions for fifteen patients was performed to ensure detected motions were similar to those previously reported and motion files utilized were suitable. Five patient plans were utilized to allow for the effects of MLC and target motion interplay to be investigated. For both motion compensation and gating techniques, plans were delivered to the stationary phantom and for each of four motion types with/without compensation/gating enabled. Using a 3%, 2 mm and 80% threshold gamma criteria, film measurements had an average pass rate of 80.5% for uncorrected deliveries versus 96.0% for motion compensated deliveries. For gated techniques average pass rates increased from 89.9% for uncorrected to 94.8% with gating enabled. Measurements with the Delta4 arrays were analyzed with a 3%, 2 mm and 10% threshold dose. An average pass rate of 83.8% was measured for uncorrected motions versus 94.8% with motion compensation. For the gated technique an average pass rate of 87.2% was found for uncorrected motions versus 96.9% with gating enabled. These results show that very high gamma pass rates are achievable when motion compensation or gating techniques are applied. When target motion is not accounted for shifts up to 5 mm in planned versus delivered isodose distributions were found. However, when motion compensation, or gated techniques were applied, much smaller differences between planned and delivered isodose distributions were found. With these techniques dose delivery accuracy is greatly improved, allowing for PTV margins to be reduced.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Masculino , Humanos , Próstata , Radiocirugia/métodos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Movimiento (Física) , Movimiento , Radiometría/métodos , Dosificación Radioterapéutica
2.
Radiat Oncol ; 19(1): 69, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822385

RESUMEN

BACKGROUND: Multiple artificial intelligence (AI)-based autocontouring solutions have become available, each promising high accuracy and time savings compared with manual contouring. Before implementing AI-driven autocontouring into clinical practice, three commercially available CT-based solutions were evaluated. MATERIALS AND METHODS: The following solutions were evaluated in this work: MIM-ProtégéAI+ (MIM), Radformation-AutoContour (RAD), and Siemens-DirectORGANS (SIE). Sixteen organs were identified that could be contoured by all solutions. For each organ, ten patients that had manually generated contours approved by the treating physician (AP) were identified, totaling forty-seven different patients. CT scans in the supine position were acquired using a Siemens-SOMATOMgo 64-slice helical scanner and used to generate autocontours. Physician scoring of contour accuracy was performed by at least three physicians using a five-point Likert scale. Dice similarity coefficient (DSC), Hausdorff distance (HD) and mean distance to agreement (MDA) were calculated comparing AI contours to "ground truth" AP contours. RESULTS: The average physician score ranged from 1.00, indicating that all physicians reviewed the contour as clinically acceptable with no modifications necessary, to 3.70, indicating changes are required and that the time taken to modify the structures would likely take as long or longer than manually generating the contour. When averaged across all sixteen structures, the AP contours had a physician score of 2.02, MIM 2.07, RAD 1.96 and SIE 1.99. DSC ranged from 0.37 to 0.98, with 41/48 (85.4%) contours having an average DSC ≥ 0.7. Average HD ranged from 2.9 to 43.3 mm. Average MDA ranged from 0.6 to 26.1 mm. CONCLUSIONS: The results of our comparison demonstrate that each vendor's AI contouring solution exhibited capabilities similar to those of manual contouring. There were a small number of cases where unusual anatomy led to poor scores with one or more of the solutions. The consistency and comparable performance of all three vendors' solutions suggest that radiation oncology centers can confidently choose any of the evaluated solutions based on individual preferences, resource availability, and compatibility with their existing clinical workflows. Although AI-based contouring may result in high-quality contours for the majority of patients, a minority of patients require manual contouring and more in-depth physician review.


Asunto(s)
Inteligencia Artificial , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
3.
Med Phys ; 49(2): 1181-1195, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34914846

RESUMEN

PURPOSE: The Radixact Synchrony system allows for target motion correction when tracking either fiducials in/around the target or a dense lesion in the lung. As such evaluation testing and quality assurance (QA) tests are required. METHODS: To allow for QA procedures to be performed with a range of available phantoms evaluation of the dosimetric delivery accuracy was performed for a range of motions, phantoms, and motion platforms. A Computerized Imaging Reference Systems, Incorporated (CIRS) 1D motion platform and Accuray Tomotherapy "Cheese" phantom was utilized to perform absolute dose and GafChromic EBT3 film measurements. A HexaMotion platform and Delta4 phantom were utilized to quantify the effects of 1D and 3D motions. Inter-device comparison was performed with the ArcCHECK and Delta4 phantoms and GafChromic EBT3 film, five patient plans were delivered to each phantom when static and with two different motion types both with and without Synchrony motion correction. RESULTS: A range of QA tests are described. A phantom was designed to allow for daily verification of system functionality. This test allows for the detection of either fiducials or a dense silicone target with a stationary phantom. Monthly testing procedures are described that allow the user to verify the dosimetric improvement when utilizing synchrony delivery motion compensation versus uncorrected motions. These can be performed utilizing a 1D motion stage with an ion-chamber and GafChromic EBT3 film to allow for a 2D dosimetric validation. Alternatively, a 3D motion platform can be utilized where available. Monthly and annual imaging tests are described. Finally, annual test procedures designed to verify the coincidence of the imaging system and treatment isocenter are described. The evaluation of the Synchrony system using a range of QA devices shows consistently high dosimetric accuracy with similar trends in passing criteria found with GafChromic EBT3 film, ArcCHECK, and Delta4 phantoms for density-based respiratory model compensation. CONCLUSION: These results highlight the large improvements in the dose distribution when motion is accounted for with the Synchrony system as measured with a range of phantoms and motion platforms that the majority of users will have available. The testing methods and QA procedures described provide guidance for new users of the Radixact Synchrony system as they implement their own QA programs for this system, until such time as an AAPM task group report is made available. QA procedures including Kilovolts (kV) imaging quality metrics and imaging dose parameters, dose deposition accuracy, target detection coincidence, and target position detection accuracy are described.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Pulmón , Movimiento (Física) , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
4.
Adv Radiat Oncol ; 7(2): 100862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036634

RESUMEN

PURPOSE: To assess clinically relevant image quality metrics (IQMs) of helical fan beam kilovoltage (kV) fan beam computed tomography (CT). METHODS AND MATERIALS: kVCT IQMs were evaluated on an Accuray Radixact unit equipped with helical fan beam kVCT to assess the capabilities of this newly available modality. kVCT IQMs were evaluated and compared to a kVCT simulator and linear accelerator-based cone beam CTs (CBCT) using a commercial CBCT image quality phantom. kVCTs were acquired on the Accuray Radixact for all combinations of kVp and mAs in fine mode using a 440-mm field of view (FOV). Evaluated IQMs were spatial resolution, overall uniformity, subject contrast, contrast-to-noise ratio (CNR), and effective slice thickness. Imaging dose was assessed for planar kV imaging. RESULTS: On this kVCT system spatial resolution and contrast were consistent across all settings with 0.28 ± 0.03 lp/mm and 9.8% ± 0.7% (both 95% confidence interval). CNR strongly depended on selected mode (views per rotation) and body size (mA per view) and ranged between 7.9 and 34.9. Overall uniformity was greater than 97% for all settings. Large FOV was not found to substantially affect the IQMs whereas small FOV affected IQMs due to its effect on pitch. Technique-matched CT simulator scans were comparable for uniformity and contrast, while spatial resolution was higher (0.43 ± 0.06 lp/mm), and CNR was between 4% (140 kVp) and 51% (100 kVp) lower. For kV-CBCT, spatial resolutions ranging from 0.37 to 0.44 lp/mm were achieved with comparable contrast, CNR, and uniformity to kVCT. All kVCT scans exhibit imaging artifacts due to helical acquisition. Clinical acquisitions of megavoltage (MV) CT, kV-CBCT, and kVCT on the same patient showed improved and comparable image quality of kVCT compared to MVCT and kV-CBCT, respectively. CONCLUSIONS: Helical fan beam kVCT allows for daily image guidance for localization and setup verification with comparable performance to existing kV-CBCT systems. Scan parameters must be selected carefully to maximize image quality for the desired tasks. Due to the large effective slice thicknesses for all parameter combinations, kVCT scans should not be used for simulation or planning of stereotactic procedures. Finally, improved image quality over MVCT has the potential to greatly improve manual and automated adaptive monitoring and planning.

5.
Cureus ; 13(5): e14910, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34113520

RESUMEN

Purpose To determine the appropriateness of implementing Mobius3D/FX (Varian Medical Systems, Inc., Palo Alto, CA, USA) as not only a pretreatment secondary check but as an alternative to measurement-based patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods Mobius3D/FX was commissioned and stock beam models were tweaked so that an independent recalculated 3D dose distribution can be obtained. Then, 50 patient-specific treatment plans for various indications were delivered across a 2D ion chamber array, radiochromic film setup, and electronic portal imager and analyzed with MobiusFX and gamma analysis. The concordance of plans scored as passing between MobiusFX and the conventional methods of QA was determined. Results All analyzed treatment plans passed with a gamma passing rate >90% across all conventional QA methods, most commonly using a 3%/3mm gamma criterion except for film measurements where a 5%/3mm criterion was applied. There was good agreement and concordance between MobiusFX and conventional methods when using a 3%/3mm criteria for MobiusFX, whereas a 2%/2mm criteria appeared too stringent as it failed treatment plans deemed clinically acceptable using conventional methods. Conclusions Using a 50-sample subset of clinically delivered treatment plans this non-inferiority-type comparison shows Mobius3D/FX based on log file analysis to be a suitable alternative to conventional QA methods when utilizing the 3%/3mm gamma criterion. Methods based on log file analysis can provide an opportunity for resource sparing, improving the efficiency, and workflow for evaluating IMRT treatment plans.

6.
Brachytherapy ; 18(5): 720-726, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31229364

RESUMEN

PURPOSE: Using in vivo measurements from optically stimulated luminescence dosimeters (OSLDs) to develop and validate a prediction model for estimating the skin dose received by patients undergoing breast intraoperative radiation therapy (IORT). METHODS AND MATERIALS: IORT was performed using INTRABEAM-600 with spherical applicators placed in the lumpectomy cavity. Ultrasound skin bridge measurements were used to determine the applicator-to-skin distance, with OSLDs placed to measure the skin surface dose at the corresponding points. The OSLD response was calibrated for the 50 kVp INTRABEAM-600 output. Models were fit to describe the dose fall-off with increasing applicator-to-skin distance and the best fitting model was chosen for estimating skin dose. RESULTS: Twenty four patients with 25 lumpectomy cavities were included, and the average skin dose recorded was 1.18 Gy ± 0.88 Gy, ranging from 0.17 Gy to 4.77 Gy, with an average applicator-to-skin distance of 19.9 mm ± 5.1 mm. An exponential-plateau model was found to best describe the dose fall-off with a root-mean-square error of 0.73. This model was then validated prospectively using skin dose measurements from five consecutive patients. Validation measurements were well within the 95% prediction limits of the model, with a root-mean-square error of 0.52, showing that the prediction model accurately estimates skin dose using ultrasound skin bridge measurements. CONCLUSIONS: This prediction model constitutes a useful tool for estimating the skin dose received during breast lumpectomy IORT. The model and accompanying 95% confidence intervals can be used to establish a minimum allowable skin bridge distance, effectively limiting the maximum allowable skin dose.


Asunto(s)
Braquiterapia/métodos , Neoplasias de la Mama/radioterapia , Dosimetría in Vivo/métodos , Piel/efectos de la radiación , Neoplasias de la Mama/cirugía , Calibración , Femenino , Humanos , Periodo Intraoperatorio , Mastectomía Segmentaria , Persona de Mediana Edad , Modelos Biológicos , Órganos en Riesgo/efectos de la radiación , Dosis de Radiación , Dosificación Radioterapéutica , Radioterapia Adyuvante/métodos , Dosimetría Termoluminiscente/métodos , Ultrasonografía/métodos
7.
Br J Radiol ; 91(1085): 20180010, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29436852

RESUMEN

OBJECTIVE: To investigate whether photon or proton-based stereotactic body radiation therapy (SBRT is the preferred modality for high dose hypofractionation prostate cancer treatment. Achievable dose distributions were compared when uncertainties in target positioning and range uncertainties were appropriately accounted for. METHODS: 10 patients with prostate cancer previously treated at our institution (Montefiore Medical Center) with photon SBRT using volumetric modulated arc therapy (VMAT) were identified. MRI images fused to the treatment planning CT allowed for accurate target and organ at risk (OAR) delineation. The clinical target volume was defined as the prostate gland plus the proximal seminal vesicles. Critical OARs include the bladder wall, bowel, femoral heads, neurovascular bundle, penile bulb, rectal wall, urethra and urogenital diaphragm. Photon plan robustness was evaluated by simulating 2 mm isotropic setup variations. Comparative proton SBRT plans employing intensity modulated proton therapy (IMPT) were generated using robust optimization. Plan robustness was evaluated by simulating 2 mm setup variations and 3% or 1% Hounsfield unit (HU) calibration uncertainties. RESULTS: Comparable maximum OAR doses are achievable between photon and proton SBRT, however, robust optimization results in higher maximum doses for proton SBRT. Rectal maximum doses are significantly higher for Robust proton SBRT with 1% HU uncertainty compared to photon SBRT (p = 0.03), whereas maximum doses were comparable for bladder wall (p = 0.43), urethra (p = 0.82) and urogenital diaphragm (p = 0.50). Mean doses to bladder and rectal wall are lower for proton SBRT, but higher for neurovascular bundle, urethra and urogenital diaphragm due to increased lateral scatter. Similar target conformality is achieved, albeit with slightly larger treated volume ratios for proton SBRT, >1.4 compared to 1.2 for photon SBRT. CONCLUSION: Similar treatment plans can be generated with IMPT compared to VMAT in terms of target coverage, target conformality, and OAR sparing when range and HU uncertainties are neglected. However, when accounting for these uncertainties during robust optimization, VMAT outperforms IMPT in terms of achievable target conformity and OAR sparing. Advances in knowledge: Comparison between achievable dose distributions using modern, robust optimization of IMPT for high dose per fraction SBRT regimens for the prostate has not been previously investigated.


Asunto(s)
Neoplasias de la Próstata/radioterapia , Hipofraccionamiento de la Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Imagen por Resonancia Magnética , Masculino , Órganos en Riesgo/diagnóstico por imagen , Fotones , Próstata/diagnóstico por imagen , Terapia de Protones , Protones , Tomografía Computarizada por Rayos X
8.
Cureus ; 10(12): e3693, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30838165

RESUMEN

Surgical cavity sizing applicators were developed for utilization prior to intraoperative radiation therapy (IORT) of the breast lumpectomy cavity with the Zeiss INTRABEAM (Carl Zeiss Meditec AG, Jena, Germany) device. The use of these applicators minimizes the number of sterilizations of the treatment applicator, which is currently limited to 100 sterilizations per applicator. This maximizes the number of patients who can be treated with each applicator, resulting in cost savings for the treating institution.

9.
Med Dosim ; 40(3): 181-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25498838

RESUMEN

We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage­prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)­ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff­ratio of 50% PIV to the PTV (R(50%)); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D(2cm)) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ(2) test was used to examine the difference in parameters between groups. The PTV V(100% PD) ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V(90% PD) ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D(2cm), 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.


Asunto(s)
Tratamientos Conservadores del Órgano/métodos , Protección Radiológica/métodos , Radiometría/métodos , Radiocirugia/métodos , Médula Espinal/cirugía , Neoplasias de la Columna Vertebral/cirugía , Humanos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA