Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Nanomedicine ; 40: 102480, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748962

RESUMEN

Proprotein convertase subtilisin/kexin type 9 is a protease enzyme secreted by liver that downregulates hepatic low-density lipoprotein receptor (LDLR) by binding and chaperoning LDLR to lysosomes for degradation, causing hypercholesteremia. The development of anti-PCSK9 therapeutics attracted considerable attention for the management of cardiovascular disease risk. However, only subcutaneous injectable PCSK9 monoclonal antibodies have been FDA approved. Oral administration of small-molecule PCSK9 inhibitors has the potential to become a practical therapeutic option if achievable. In the present work, we used nanotechnological approaches to develop the first small oral molecule nano-hepatic targeted anti-PCSK9. Using high-throughput optimization and a series of evaluations, a stable water-dispersible 150-200 nm nano-encapsulated drug (named P-4) conjugated with hepatic targeting moiety was synthesized and characterized (named P-21). Pharmacodynamic (PD), pharmacokinetic (PK) and bioavailability studies were conducted using a high fat diet nutritionally induced hypercholesterolemia mouse model to evaluate the efficacy of P-21 as an anti-PCSK9 LDL-cholesterol lowering hepatic targeted nanodrug. The PD results demonstrate that P-21 in a dose-dependent manner is highly effective in lowering LDL-C by 50-90%. PK results show the maximum plasma concentration (Cmax) of P-4 was observed after 30 min of administration with 31% oral bioavailability and had a sustained longer half-life up to 24 h. In vivo safety studies in rats showed no apparent adverse effects, normal chemical biomarkers and normal histopathological findings in all P-21 treated groups at different escalating doses. Compared to the FDA-approved monoclonal antibodies, P-21 offers a more efficient, and practical treatment protocol for targeting uncontrolled hypercholesterolemia in reducing the risk of cardiovascular diseases. The present study introduced a nano-targeted drug delivery approaches for PCSK9/LDLR antagonist.


Asunto(s)
Hipercolesterolemia , Proproteína Convertasa 9 , Animales , LDL-Colesterol/metabolismo , LDL-Colesterol/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Hígado/metabolismo , Ratones , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/uso terapéutico , Ratas , Receptores de LDL/metabolismo
4.
Bioorg Med Chem ; 43: 116278, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34157571

RESUMEN

Polymer-drug conjugates are growing in interest as novel anticancer agents for targeted cancer therapy. The aim of this study was to synthesize a poly(ethylene glycol) (PEG) conjugated anticancer drug for neuroblastoma, which is the most common extracranial solid tumor of childhood and the deadliest tumor of infancy. In our previous studies, we designed and synthesized a dual targeting agent using benzylguanidine (BG) conjugated with the high affinity thyrointegrin αvß3 antagonist TriAzole Tetraiodothyroacetic acid (TAT) via non-cleavable bonding to PEG400 to make BG-P400-TAT and its derivatives as agents against neuroblastoma. Here, we improved the pharmacodynamic properties and increased the solubility by changing the polymer length to 1600 molecular weight. The TAT group, which acts as an integrin αvß3 antagonist, and the BG group, which can be taken up by neuroblastoma cells through the norepinephrine transporter (NET) system, are conjugated to PEG1600 to make BG-PEG1600-TAT. The binding affinity of BG-PEG1600-TAT was 40-fold higher to integrin αvß3 versus BG-P400-TAT and was associated with greater anticancer activities against neuroblastoma cells (SK-N-F1 and SKNAS) implanted in SCID mice along with broad spectrum anti-angiogenesis activities versus the FDA approved anti-Vascular Endothelial Growth Factor (VEGF) monoclonal antibody Avastin (bevacizumab). In conclusion, our novel dual targeting of NET and αvß3 receptor antagonist, BG-P1600-TAT demonstrated broad spectrum anti-angiogenesis and anti-cancer activities in suppressing neuroblastoma tumor progression and metastasis. Thus, BG-PEG1600-TAT represents a potential clinical candidate for targeted therapy in neuroblastoma management.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Integrina alfaVbeta3/metabolismo , Neuroblastoma/tratamiento farmacológico , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Polietilenglicoles/farmacología , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Humanos , Integrina alfaVbeta3/química , Estructura Molecular , Neuroblastoma/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/química , Polietilenglicoles/química , Relación Estructura-Actividad
5.
Bioorg Med Chem ; 42: 116250, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118788

RESUMEN

Receptor-mediated cancer therapy has received much attention in the last few decades. Neuroblastoma and other cancers of the sympathetic nervous system highly express norepinephrine transporter (NET) and cell plasma membrane integrin αvß3. Dual targeting of the NET and integrin αvß3 receptors using a Drug-Drug Conjugate (DDC) might provide effective treatment strategy in the fight against neuroblastoma and other neuroendocrine tumors. In this work, we synthesized three dual-targeting BG-P400-TAT derivatives, dI-BG-P400-TAT, dM-BG-P400-TAT, and BG-P400-PAT containing di-iodobenzene, di-methoxybenzene, and piperazine groups, respectively. These derivatives utilize to norepinephrine transporter (NET) and the integrin αvß3 receptor to simultaneously modulate both targets based on evaluation in a neuroblastoma animal model using the neuroblastoma SK-N-F1 cell line. Among the three synthesized agents, the piperazine substituted BG-P400-PAT exhibited potent integrin αvß3 antagonism and reduced neuroblastoma tumor growth and cancer cell viability by >90%. In conclusion, BG-P400-PAT and derivatives represent a potential therapeutic approach in the management of neuroblastoma.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Neuroblastoma/tratamiento farmacológico , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Tiroxina/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ratones , Ratones Desnudos , Estructura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Relación Estructura-Actividad , Tiroxina/análogos & derivados , Tiroxina/química , Células Tumorales Cultivadas
6.
Nutr Metab Cardiovasc Dis ; 30(10): 1795-1799, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32723580

RESUMEN

Type 2 Diabetes mellitus is associated with aging and shortened telomere length. Telomerase replaces lost telomeric repeats at the ends of chromosomes and is necessary for the replicative immortality of cells. Aspirin and the n3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are commonly used therapies in people with type 2 diabetes for reducing cardiovascular disease events, though their relation to telomerase activity is not well studied. We explored the effects of aspirin, EPA + DHA, and the combined effects of aspirin and EPA + DHA treatment on telomerase activity in 30 adults with diabetes mellitus. EPA and DHA ingestion alone increased telomerase activity then a decrease occurred with the addition of aspirin consumption. Crude (F-stat = 2.09, p = 0.13) and adjusted (F-stat = 2.20, p = 0.14) analyses of this decrease showed signs of a trend. These results suggest that aspirin has an adverse effect on aging in diabetics who have relatively high EPA and DHA ingestion.


Asunto(s)
Aspirina/administración & dosificación , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Telomerasa/metabolismo , Homeostasis del Telómero/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Aspirina/efectos adversos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/enzimología , Ácidos Docosahexaenoicos/efectos adversos , Ácido Eicosapentaenoico/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , New York , Resultado del Tratamiento
7.
Molecules ; 25(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503143

RESUMEN

One of the major causes of women's death in the world is breast cancer. Consequently, numerous regimens for the control of this severe disease have been created. The chemotherapeutic agent doxorubicin (DOX) is frequently used to treat breast cancer, but DOX can also cause cardiotoxic effects that lead to heart failure. Therefore, many research studies have been done to find a natural product that effectively potentiates or does not interfere with DOX's anticancer effect and protects against its cardiotoxicity. We studied the impact of combined nanoformulated Ajwa (Phoenix dactylifera) selected bioactive compounds (BAC) rutin (R) and quercetin (Q) in nude mice breast cancer xenografts on DOX-mediated anticancer efficacy. We also studied if this Ajwa BAC could safeguard against DOX-mediated cardiomyopathies by evaluating plasma cardiac troponin-I (cTn-I) levels and cardiac histopathology. Nanoformulated Ajwa BAC effectively alleviated weight loss induced by DOX in mice and significantly decreased the elevated cTn-I. Furthermore, 5 mg RQ-NPs/kg of nude mice that subcutaneously daily injected for 11 days, attenuated the histopathological alterations induced in cardiac muscles due to DOX without any interference with the anticancer effects of DOX against breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Nanopartículas/administración & dosificación , Phoeniceae/química , Extractos Vegetales/farmacología , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Quimioterapia Combinada , Femenino , Humanos , Ratones , Ratones Desnudos , Nanopartículas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Bioconjug Chem ; 30(12): 3087-3097, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31714064

RESUMEN

Discovery of bioactive molecules that target integrins has implicated their role in tumor angiogenesis, tumor growth, metastasis, and other pathological angiogenesis processes. Integrins are members of a family of cell surface receptors that play a critical role in the angiogenesis process. Tetraiodothyroacetic acid (tetrac), a deaminated derivative of l-thyroxine (T4), is a "thyrointegrin" antagonist that blocks the actions of l-triiodothyronine (T3) and T4 with an interaction site that is located at or near the RGD recognition site identified on integrin αvß3's binding pocket (thyrointegrin αvß3 receptors). We have enhanced the biological activity of a tetrac-based inhibitor via significantly improving its αvß3 receptor binding affinity by introducing a triazole ring on the outer ring of tetrac and covalently conjugating to polymer to increase the product's hydrophilicity via PEGylation. The product, P-bi-TAT, was restricted from nuclear translocation and demonstrated high blood brain barrier permeability and retention in contrast to the non-PEG conjugated derivative. Results of biological activity indicated that this macromolecule new chemical entity P-bi-TAT has greater than 400-fold potent integrin αvß3 affinity versus the parent compound tetrac and has potent anticancer/anti-angiogenesis efficacy against glioblastoma multiforme (GBM). P-bi-TAT administered subcutaneously once daily for 21 days at 1-10 mg/kg mouse body weight resulted in a dose-dependent suppression of GBM tumor growth and viability as monitored with IVIS imaging (P < 0.001). GBM tumors had >95% volume loss and maximal loss of GBM cell viability during the 21 days ON-treatment experiment as well as in the 21 days ON followed by 21 days OFF-treatment experiment (P < 0.001). In conclusion, P-bi-TAT is a promising lead clinical candidate effective in the treatment of human GBM.


Asunto(s)
Inhibidores de la Angiogénesis/química , Antineoplásicos/química , Glioblastoma/tratamiento farmacológico , Polietilenglicoles/química , Tiroxina/análogos & derivados , Triazoles/química , Animales , Barrera Hematoencefálica/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glioblastoma/patología , Humanos , Integrina alfaVbeta3/antagonistas & inhibidores , Ratones , Tiroxina/química , Triazoles/farmacología
9.
Molecules ; 24(11)2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163672

RESUMEN

The targeted nano-encapsulation of anticancer drugs can improve drug delivery and the selective targeting of cancer cells. Nuclear factor kappa B (NF-kB) is a regulator for different biological responses, including cell proliferation and differentiation. In acute myeloid leukemia (AML), constitutive NF-κB has been detected in more than 50% of cases, enabling leukemic cells to resist apoptosis and stimulate uncontrolled proliferation. We evaluated NF-kB expression in bone marrow samples from 103 patients with AML using quantitative real time polymerase chain reaction (RT-PCR) and found that expression was increased in 80.5% (83 out 103) of these patients with AML in comparison to the control group. Furthermore, overexpressed transmembrane glycoprotein (CD44) on leukemic cells in comparison to normal cells is known to play an important role in leukemic cell engraftment and survival. We designed poly lactide co-glycolide (PLGA) nanoparticles conjugated with antiCD44 and encapsulating parthenolide (PTL), a nuclear factor kappa B (NF-kB) inhibitor, in order to improve the selectivity and targeting of leukemic cells and to spare normal cells. In vitro, in leukemic cell lines Kasumi-1, KG-1a, and THP-1, proliferation was decreased by 40% (** p < 0.01) with 5 µM PLGA-antiCD44-PTL nanoparticles in comparison to the same concentration of free PTL (~10%). The higher uptake of the nanoparticles by leukemic cells was confirmed with confocal microscopy. In conclusion, PLGA-antiCD44-PTL nanoparticles improved the bioavailability and selective targeting of leukemic cells, thus holding promise as a drug delivery system to improve the cure rate of AML.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , FN-kappa B/metabolismo , Nanopartículas/química , Sesquiterpenos/uso terapéutico , Adolescente , Adulto , Anciano , Antígenos CD/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Dispersión Dinámica de Luz , Femenino , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Sesquiterpenos/análisis , Sesquiterpenos/farmacología , Adulto Joven
12.
Molecules ; 22(12)2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29182588

RESUMEN

We describe the synthesis, reactivity, and antithrombotic and anti-angiogenesis activity of difluoroallicin (S-(2-fluoroallyl) 2-fluoroprop-2-ene-1-sulfinothioate) and S-2-fluoro-2-propenyl-l-cysteine, both easily prepared from commercially available 3-chloro-2-fluoroprop-1-ene, as well as the synthesis of 1,2-bis(2-fluoroallyl)disulfane, 5-fluoro-3-(1-fluorovinyl)-3,4-dihydro-1,2-dithiin, trifluoroajoene ((E,Z)-1-(2-fluoro-3-((2-fluoroallyl)sulfinyl)prop-1-en-1-yl)-2-(2-fluoroallyl)disulfane), and a bis(2-fluoroallyl)polysulfane mixture. All tested organosulfur compounds demonstrated effective inhibition of either FGF or VEG-mediated angiogenesis (anti-angiogenesis activity) in the chick chorioallantoic membrane (CAM) or the mouse Matrigel® models. No embryo mortality was observed. Difluoroallicin demonstrated greater inhibition (p < 0.01) versus organosulfur compounds tested. Difluoroallicin demonstrated dose-dependent inhibition of angiogenesis in the mouse Matrigel® model, with maximal inhibition at 0.01 mg/implant. Allicin and difluoroallicin showed an effective antiplatelet effect in suppressing platelet aggregation compared to other organosulfur compounds tested. In platelet/fibrin clotting (anti-coagulant activity), difluoroallicin showed concentration-dependent inhibition of clot strength compared to allicin and the other organosulfur compounds tested.


Asunto(s)
Ajo/química , Compuestos Orgánicos/química , Compuestos Orgánicos/farmacología , Compuestos de Azufre/química , Compuestos de Azufre/farmacología , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Relación Dosis-Respuesta a Droga , Fibrinolíticos/síntesis química , Fibrinolíticos/química , Fibrinolíticos/farmacología , Halogenación , Ratones , Modelos Moleculares , Conformación Molecular , Neovascularización Fisiológica/efectos de los fármacos , Compuestos Orgánicos/síntesis química , Compuestos de Azufre/síntesis química
14.
Cancers (Basel) ; 16(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792024

RESUMEN

The journal retracts the article, "Anti-Cancer Activities of Thyrointegrin αvß3 Antagonist Mono- and Bis-Triazole Tetraiodothyroacetic Acid Conjugated via Polyethylene Glycols in Glioblastoma" [...].

15.
Neurooncol Adv ; 5(1): vdac180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36879662

RESUMEN

Background: Thyrointegrin αvß3 receptors are unique molecular cancer therapeutic targets because of their overexpression on cancer and rapidly dividing blood vessel cells compared and quiescent on normal cells. A macromolecule, TriAzole Tetraiodothyroacetic acid (TAT) conjugated to polyethylene glycol with a lipophilic 4-fluorobenyl group (fb-PMT and NP751), interacts with high affinity (0.21 nM) and specificity with the thyrointegrin αvß3 receptors on the cell surface without nuclear translocation in contrast to the non-polymer conjugated TAT. Methods: The following in vitro assays were carried out to evaluate NP751 including binding affinity to different integrins, transthyretin (TTR)-binding affinity, glioblastoma multiforme (GBM) cell adhesion, proliferation assays, nuclear translocations, chorioallantoic membrane model of angiogenesis, and microarray for molecular mechanisms. Additionally, in vivo studies were carried out to evaluate the anticancer efficacy of NP751, its biodistribution, and brain GBM tumor versus plasma levels kinetics. Results: NP751 demonstrated a broad spectrum of antiangiogenesis and anticancer efficacy in experimental models of angiogenesis and xenografts of human GBM cells. Tumor growth and cancer cells' viability were markedly decreased (by > 90%; P < .001) in fb-PMT-treated U87-luc or 3 different primary human GBM xenograft-bearing mice based on tumor in vivo imaging system (IVIS) imaging and histopathological examination, without relapse upon treatment discontinuation. Additionally, it effectively transports across the blood-brain barrier via its high-affinity binding to plasma TTR with high retention in brain tumors. NP751-induced effects on gene expression support the model of molecular interference at multiple key pathways essential for GBM tumor progression and vascularization. Conclusions: fb-PMT is a potent thyrointegrin αvß3 antagonist with potential impact on GBM tumor progression.

17.
Biomedicines ; 10(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35453545

RESUMEN

Thyroid hormone L thyroxine stimulates pancreatic carcinoma cell proliferation via thyrointegrin αvß3 receptors, and antagonist tetraiodothyroacetic acid (tetrac) inhibits cancer cell growth. Chemically modified bis-triazole-tetrac conjugated with polyethylene glycol (P-bi-TAT) has higher binding affinity to αvß3 receptors compared to tetrac. We investigated the antiproliferation effect of P-bi-TAT in pancreatic cancer cells (SUIT2) and its radio- and chemo-sensitizing roles in a mouse model of pancreatic cancer. P-bi-TAT treatment increased tumor-targeted radiation-induced cell death and decreased tumor size. P-bi-TAT acted as a chemo-sensitizer and enhanced the 5-fluorouracil (5FU) effect in decreasing pancreatic tumor weight compared to 5FU monotherapy. Withdrawal of treatment continued the tumor regression; however, the 5FU group showed tumor regrowth. The mechanisms of the anti-cancer activity of P-bi-TAT on SUIT2 cells were assessed by microarray experiments, and genome-wide profiling identified significant alterations of 1348 genes' expression. Both down-regulated and up-regulated transcripts suggest that a molecular interference at the signaling pathway-associated gene expression is the prevalent mode of P-bi-TAT anti-cancer activity. Our data indicate that non-cytotoxic P-bi-TAT is not only an anti-cancer agent but also a radio-sensitizer and chemo-sensitizer that acts on the extracellular domain of the cell surface αvß3 receptor.

18.
Front Pharmacol ; 13: 902141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518666

RESUMEN

We have recently reported on the development of fb-PMT (NP751), a conjugate of the thyroid hormone metabolite tetraiodothyroacetic acid (tetrac) and monodisperse polyethylene glycol 36. It exhibited high affinity for thyrointegrin αvß3 receptor and potent anti-angiogenic and anticancer activity in vivo. The objective of the current study is to determine the pharmacokinetics (PK) of fb-PMT in experimental animals, such as mice, rats, and monkeys. NP751 was quantified using a propylene diamine-modified tetraiodothyroacetic acid (DAT) as an internal standard. The limit of quantification (LOQ) for fb-PMT was 1.5 ng/µL and the recovery efficiency was 93.9% with the developed method. The peak plasma concentration (Cmax) and the area under the curve (AUC) results at different doses in mice, rats and monkeys suggest that pharmacokinetics of NP751 is dose-dependent within the dose ranges administered. Results indicate that NP751 has comparable PK parameters that provides enough exposure as a molecularly tumor targeted molecule in multiple species and is a promising anticancer therapeutic.

19.
Clin Transl Sci ; 15(2): 353-360, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34599865

RESUMEN

Hyperphosphatemia is present in most patients with end-stage renal disease (ESRD) and has been associated with increased cardiovascular mortality. Phosphate binders (calcium-based and calcium free) are the mainstay pharmacologic treatment to lower phosphorus levels in patients with ESRD. We evaluated biochemical markers of vascular calcification, inflammation, and endothelial dysfunction in patients with chronic kidney disease (CKD) treated with sevelamer carbonate (SC) versus calcium acetate (CA). Fifty patients with CKD (stages 3 and 4) were enrolled and assigned to treatment with SC and CA for 12 weeks. At the end of the study the biomarkers of vascular calcification, inflammation, and endothelial dysfunction were analyzed. A significant increase in HDL-cholesterol was observed with SC but not with CA in patients with CKD. Treatment with SC reduced serum phosphate, calcium phosphate, and FGF-23 levels and there was no change with CA treatment. The inflammatory markers IL-8, IFN-γ, and TNFα decreased with response to both treatments. The levels of IL-6 significantly increased with CA treatment and no change was observed in the SC treatment group. SC showed favorable effects on anti-inflammatory and vascular calcification biomarkers compared to CA treatment in patients with CKD stages 3 and 4 with normal phosphorous values.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Acetatos , Calcio , Compuestos de Calcio , Quelantes/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Poliaminas/efectos adversos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Sevelamer/uso terapéutico , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/etiología
20.
J Cancer ; 13(8): 2594-2606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711848

RESUMEN

Background: In neuroendocrine tumors, the norepinephrine transporter (NET) is very active and has been exploited for diagnostic imaging purposes and/or therapy with localized radiotherapy. Integrin αvß3 is generously expressed by and/or activated on cancer cells, but not by nonmalignant cells. Purpose: In the present investigation, the anticancer efficacy of the dual targeting of norepinephrine transporter (NET), benzylguanidine (BG), and thyrointegrin αvß3 receptors antagonist triazole tetraiodothyroacetic acid (TAT) conjugated via the non-cleavable linker polyethylene glycol (P, PEG400) in the treatment of human neuroblastoma was evaluated. Experimental approach: The synthesized dual targeting compound, a novel new chemical entity named BG-P400-TAT, has purity > 98% and was formulated and tested in neuroblastoma models using neuroblastoma cell lines (SK-N-FI, SMS-KCN and SMS-KANR) implanted in SCID and NSG mice models. Key Results: BG-P400-TAT demonstrated significant (**P<0.01, ***P< 0.001) suppression of neuroblastoma tumor progression, growth, and viability in both mice models implanted with the neuroblastoma. The pharmacokinetic and biodistribution profile of BG-P400-TAT showed a significant increase in BG-P400-TAT levels in plasma and xenografts of NSG compared to SCID mice. Further our RNAseq genome-wide expression profiling experiments in neuroblastoma cell line SKNAS results showed that BG-P400-TAT treatment altered the signal transduction pathways, intracellular multiprotein complexes and Independent GSEA. Conclusion & Implications: BG-P400-TAT represents a potential lead candidate for the treatment of neuroblastoma and other neuroendocrine tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA