Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 72(3): 522-534, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35944927

RESUMEN

OBJECTIVE: Due to the limited number of modifiable risk factors, secondary prevention strategies based on early diagnosis represent the preferred route to improve the prognosis of pancreatic ductal adenocarcinoma (PDAC). Here, we provide a comparative morphogenetic analysis of PDAC precursors aiming at dissecting the process of carcinogenesis and tackling the heterogeneity of preinvasive lesions. DESIGN: Targeted and whole-genome low-coverage sequencing, genome-wide methylation and transcriptome analyses were applied on a final collective of 122 morphologically well-characterised low-grade and high-grade PDAC precursors, including intestinal and gastric intraductal papillary mucinous neoplasms (IPMN) and pancreatic intraepithelial neoplasias (PanIN). RESULTS: Epigenetic regulation of mucin genes determines the phenotype of PDAC precursors. PanIN and gastric IPMN display a ductal molecular profile and numerous similarly regulated pathways, including the Notch pathway, but can be distinguished by recurrent deletions and differential methylation and, in part, by the expression of mucin-like 3. Intestinal IPMN are clearly distinct lesions at the molecular level with a more instable genotype and are possibly related to a different ductal cell compartment. CONCLUSIONS: PDAC precursors with gastric and intestinal phenotype are heterogeneous in terms of morphology, genetic and epigenetic profile. This heterogeneity is related to a different cell identity and, possibly, to a different aetiology.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Epigénesis Genética , Neoplasias Intraductales Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Mucinas/metabolismo , Fenotipo , Neoplasias Pancreáticas
2.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322422

RESUMEN

Human genomes contain about 100,000 LINE-1 (L1) retroelements, of which more than 100 are intact. L1s are normally tightly controlled by epigenetic mechanisms, which often fail in cancer. In bladder urothelial carcinoma (UC), particularly, L1s become DNA-hypomethylated, expressed and contribute to genomic instability and tumor growth. It is, however, unknown which individual L1s are activated. Following RNA-immunoprecipitation with a L1-specific antibody, third generation nanopore sequencing detected transcripts of 90 individual elements in the VM-Cub-1 UC line with high overall L1 expression. In total, 10 L1s accounted for >60% of the reads. Analysis of five specific L1s by RT-qPCR revealed generally increased expression in UC tissues and cell lines over normal controls, but variable expression among tumor cell lines from bladder, prostate and testicular cancer. Chromatin immunoprecipitation demonstrated active histone marks at L1 sequences with increased expression in VM-Cub-1, but not in a different UC cell line with low L1 expression. We conclude that many L1 elements are epigenetically activated in bladder cancer in a varied pattern. Our findings indicate that expression of individual L1s is highly heterogeneous between and among cancer types.


Asunto(s)
Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Neoplasias Testiculares/genética , Anciano , Anciano de 80 o más Años , Inmunoprecipitación de Cromatina , Metilación de ADN/genética , Metilación de ADN/fisiología , Femenino , Histonas/metabolismo , Humanos , Inmunoprecipitación , Masculino , Persona de Mediana Edad , Secuenciación de Nanoporos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Prostate ; 75(16): 1958-71, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26384005

RESUMEN

BACKGROUND: Increased expression of human endogenous retroviruses, especially HERV-K(HML-2) proviruses, has recently been associated with prostate carcinoma progression. In particular, a HML-2 locus in chromosome 22q11.23 (H22q) is upregulated in many cases. We therefore aimed at delineating the extent and repertoire of HML-2 transcription in prostate cancer tissues and cell lines and to define the transcription pattern and biological effects of H22q. METHODS: Sanger and high throughput amplicon sequencing was used to define the repertoire of expressed HML-2 in a selected set of samples. qRT-PCR was used to quantify expression of selected proviruses in an extended set of prostate cancer tissues. Transcription factor binding sites (TFBS) were compared bioinformatically using the Transfac database. Expression of H22q was further characterized by siRNA-mediated knockdown, 5' RACE mapping of transcriptional start sites (TSS) and identification of splice sites. Functional effects of H22q knockdown were investigated by viability and apoptosis assays. RESULTS: In addition to H22q, a limited number of other proviruses were found expressed by sequencing. Of these, provirus ERVK-5 and to a lesser degree ERVK-15 were frequently upregulated in prostate cancer. In contrast, expression of ERVK-24, predominant in germ cell tumors, was not detectable in prostatic tissues. While HML-2 LTRs contain binding sites for the androgen receptor and cofactors, no consistent differences in transcription factor binding sites were found between expressed and non-expressed proviruses. The H22q locus contains two 5'-LTRs of which the upstream LTR is predominantly used in prostatic cells, with an imprecise TSS. Splicing of H22q transcripts is complex, generating, among others, a transcript with an Np9-like ORF. Knockdown of H22q did not significantly affect proliferation or apoptosis of prostate cancer cells. CONCLUSIONS: Our findings further underline that HML-2 expression is commonly highly tissue-specific. In prostate cancer, a limited number of loci become activated, especially H22q and ERVK-5. As expressed and non-expressed proviruses do not differ significantly in TFBS, tissue- and tumor-specific expression may be governed primarily by chromatin context. Overexpression of HML-2 H22q is more likely consequence than cause of prostate cancer progression.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Virales/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Apoptosis , Supervivencia Celular , Progresión de la Enfermedad , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166684, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878305

RESUMEN

Tenascin C (TNC) is an extracellular matrix (ECM) protein and a potential biomarker affecting progression of different tumor types, such as pancreatic and lung cancer. Alternative splicing variants of TNC are known to have an impact on interaction partners like other ECM proteins or cell surface receptors, including epidermal growth factor receptor (EGFR), leading to numerous and sometimes opposite roles of TNC in tumor cell dissemination and proliferation. Only little is known about the impact of TNC on biologic characteristics of lung cancer, such as invasion and metastatic potential. In the present study, we could link an increased expression of TNC in lung adenocarcinoma (LUAD) tissues with an unfavorable clinical outcome of patients. Furthermore, we investigated the functional role of TNC in LUAD. Immunohistochemical staining of TNC revealed a significant increase of TNC levels in primary tumours and metastases compared to normal lung tissue. Additionally, a significant correlation between TNC mRNA expression and EGFR copy number and protein expression levels has been determined. Moreover, inhibition of TNC in lung fibroblasts led to reduced invasiveness of LUAD cells harboring EGFR-activating mutations and to a shorter lamellipodia perimeter and a reduced lamellipodia area on the surface of LUAD cells. This study provides the evidence that TNC expression might be a biological relevant factor in LUAD progression in an EGFR-dependent manner and that it regulates tumor cell invasion by rearrangement of the actin cytoskeleton, especially affecting lamellipodia formation.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Tenascina/genética , Tenascina/metabolismo
5.
Int J Cancer ; 131(6): E897-904, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22573467

RESUMEN

Epigenetic aberrations are frequent in prostate cancer and could be useful for detection and prognostication. However, the underlying mechanisms and the sequence of these changes remain to be fully elucidated. The tumor suppressor gene RARRES1 (TIG1) is frequently hypermethylated in several cancers. Having noted changes in the expression of its paralogous neighbor gene LXN at 3q25.32, we used pyrosequencing to quantify DNA methylation at both genes and determine its relationship with clinicopathological parameters in 86 prostate cancer tissues from radical prostatectomies. Methylation at LXN and RARRES1 was highly correlated. Increasing methylation was associated with worse clinical features, including biochemical recurrence, and decreased expression of both genes. However, expression of three neighboring genes was unaffected. Intriguingly, RARRES1 methylation was influenced by the genotype of the rs6441224 single-nucleotide polymorphism (SNP) in its promoter. We found that this SNP is located within an ETS-family-response element and that the more strongly methylated allele confers lower activity in reporter assays. Concomitant methylation of RARRES1 and LXN in cancerous tissues was also detected in prostate cancer cell lines and was shown to be associated with repressive histone modifications and transcriptional downregulation. In conclusion, we found that genotype-associated hypermethylation of the ETS-family target gene RARRES1 influences methylation at its neighbor gene LXN and could be useful as a prognostic biomarker.


Asunto(s)
Metilación de ADN , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Transcripción Genética , Antígenos/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Pronóstico , Regiones Promotoras Genéticas , Elementos de Respuesta
6.
World J Urol ; 30(3): 319-25, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21882048

RESUMEN

PURPOSE: The candidate tumor suppressor ID4 is downregulated in various cancers by DNA hypermethylation. We have performed the first systematic analysis of ID4 expression and methylation in prostate cancer. METHODS: ID4 mRNA expression was analyzed by quantitative RT-PCR in 47 carcinoma and 13 benign prostatic tissues obtained by prostatectomy. Methylation was analyzed in an extended series of samples by methylation-specific MS-PCR and pyrosequencing, controlled by bisulfite sequencing. RESULTS: ID4 expression was significantly decreased in prostate cancers, especially in cases with adverse clinical and histopathological features and earlier recurrence. Hypermethylation in carcinomas was detected by MS-PCR and pyrosequencing, but the results of the two techniques were not fully concordant. The difference was created by generally partial and heterogeneous methylation. Weak methylation was also detected in benign prostatic tissue samples. CONCLUSIONS: ID4 downregulation may contribute to prostate cancer pathogenesis and is often accompanied by DNA hypermethylation. The case of ID4 illustrates exemplarily the limits and pitfalls of techniques for the detection of methylation changes in prostate cancer tissues.


Asunto(s)
Metilación de ADN/fisiología , Regulación hacia Abajo/fisiología , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Neoplasias de la Próstata/metabolismo , Anciano , Secuencia de Bases , Línea Celular Tumoral , Células Cultivadas , ADN de Neoplasias/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Próstata/citología , Próstata/metabolismo , Próstata/cirugía , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , ARN Mensajero/metabolismo
7.
Cancers (Basel) ; 14(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35159117

RESUMEN

BACKGROUND: Survival of patients with adenocarcinoma of the pancreas (PDAC) is poor and has remained almost unchanged over the past decades. The genomic landscape of PDAC has been characterized in recent years. The aim of this study was to identify a genetic profile as a possible predictor of prolonged survival in order to tailor therapy for PDAC patients. METHODS: Panel next generation sequencing (NGS) and immunohistochemistry (IHC) were performed on paraffin-embedded tumor tissues from curatively treated PDAC patients. Tumor slides were re-evaluated with a focus on the histomorphology. Patients were subgrouped according to short and long overall (<4 years/>4 years) and disease-free (<2 years/>2 years) survival. RESULTS: Thirty-nine patients were included in the study. Clinicopathological staging variables as well as the histomorphological subgroups were homogenously distributed between short- and long-term overall and disease-free survivors. In survival analysis, patients with the KRAS G12D mutation and patients with TP53 nonsense and splice-site mutations had a significantly worse overall survival (OS) and disease-free survival (DFS). Patients with long-term OS and DFS showed no KRAS G12D, no TP53 nonsense or splice-site mutations. Rare Q61H/D57N KRAS mutations were only found in long-term survivors. The allele frequency rate of KRAS and TP53 mutations in tumor cells was significantly higher in short-term disease-free survivors and overall survivors, respectively. CONCLUSIONS: NGS of PDAC revealed significant differences in survival outcome in a patient collective with homogenously distributed clinicopathological variables. Further multi-institutional studies are warranted to identify more long-term survivors to detect genetic differences suitable for targeted therapy.

8.
Cells ; 11(5)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269426

RESUMEN

Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder caused by mutations within nibrin (NBN), a DNA damage repair protein. Hallmarks of NBS include chromosomal instability and clinical manifestations such as growth retardation, immunodeficiency, and progressive microcephaly. We employed induced pluripotent stem cell-derived cerebral organoids from two NBS patients to study the etiology of microcephaly. We show that NBS organoids carrying the homozygous 657del5 NBN mutation are significantly smaller with disrupted cyto-architecture. The organoids exhibit premature differentiation, and Neuronatin (NNAT) over-expression. Furthermore, pathways related to DNA damage response and cell cycle are differentially regulated compared to controls. After exposure to bleomycin, NBS organoids undergo delayed p53-mediated DNA damage response and aberrant trans-synaptic signaling, which ultimately leads to neuronal apoptosis. Our data provide insights into how mutations within NBN alters neurogenesis in NBS patients, thus providing a proof of concept that cerebral organoids are a valuable tool for studying DNA damage-related disorders.


Asunto(s)
Microcefalia , Síndrome de Nijmegen , Daño del ADN , Humanos , Microcefalia/genética , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/metabolismo , Organoides/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Carcinogenesis ; 32(10): 1484-92, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21828060

RESUMEN

Retroelements constitute a large part of the human genome. These sequences are mostly silenced in normal cells, but genome-wide DNA hypomethylation in cancers might lead to their re-expression. Whether this re-expression really occurs in human cancers is largely unkown. We therefore investigated expression and DNA methylation of several classes of retroelements in human prostate cancer tissues and cell lines by quantitative reverse transcription-polymerase chain reaction and pyrosequencing, respectively. The most striking finding was strong and generalized increased expression of the HERV-K_22q11.23 provirus in cancers, including de novo expression of a spliced accessory Np9 transcript in some tumors. In parallel, DNA methylation in the long terminal repeat (LTR) decreased. Conversely, HERVK17 expression was significantly diminished in cancer tissues, but this decrease was unrelated to LTR methylation. Expression of both proviruses was restricted to androgen-responsive prostate cancer cell lines and LTRs sequences containing steroid hormone-responsive elements bound the androgen receptor and conferred androgen responsiveness to reporter constructs. Expression of LINE-1 5'-untranslated region (UTR) and 3'-UTR sequences in prostate cancers rather decreased, despite significant hypomethylation of the internal LINE-1 promoter. Increased expression of the young AluYa5 and AluYb8 families was restricted to individual tumors. Our findings demonstrate a surprising specificity of changes in expression and DNA methylation of retroelements in prostate cancer. In particular, LINE-1 hypomethylation does not lead to generalized overexpression, but specific human endogenous retrovirus-K proviruses display conspicuous changes in their expression hinting at significant functions during prostate carcinogenesis.


Asunto(s)
Metilación de ADN , Retrovirus Endógenos/genética , Elementos de Nucleótido Esparcido Largo/genética , Neoplasias de la Próstata/genética , Provirus/genética , Retroelementos/fisiología , Inmunoprecipitación de Cromatina , ADN de Neoplasias/genética , Humanos , Luciferasas/metabolismo , Masculino , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transcripción Genética , Células Tumorales Cultivadas
10.
Sci Rep ; 11(1): 2901, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536452

RESUMEN

Pancreatic cystic lesions (PCL) are increasingly diagnosed. Endoscopic ultrasound fine-needle aspiration (EUS-FNA) cytology is often used for diagnostic confirmation but can be inconclusive. In this study, the role of molecular analyses in the pre-operative diagnostics of PCL is evaluated. Targeted Next Generation Sequencing (NGS) applied on cytology smears was retrospectively evaluated in a cohort of 37 resected PCL. Usefulness of NGS on fresh cyst fluids was tested in a prospective cohort of patients with newly diagnosed PCL (n = 71). In the retrospective cohort, cytology plus NGS displayed higher sensitivity (94.1% vs. 87.1%) and specificity (100% vs. 50%) than cytology alone for the detection of mucinous neoplasms. In the prospective cohort, sensitivity and specificity of conventional cytology alone were 54.2% and 100% for the detection of mucinous neoplasia and 50.0% and 100% for the detection of high-grade dysplasia, respectively. Adding NGS, all lesions which underwent histopathologic verification (12/71, 17%) could be classified without false positive or false negative results regarding the detection of mucinous neoplasm so far. NGS analysis of cfDNA in PCL fluids is feasible and can increase diagnostic accuracy in the detection of mucinous neoplasms compared to cytology alone. However, algorithms for the detection of high-risk lesions need further improvement.


Asunto(s)
ADN Tumoral Circulante/análisis , Líquido Quístico/química , Quiste Pancreático/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , ADN Tumoral Circulante/genética , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Estudios de Factibilidad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Páncreas/diagnóstico por imagen , Páncreas/patología , Páncreas/cirugía , Quiste Pancreático/etiología , Quiste Pancreático/genética , Quiste Pancreático/cirugía , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirugía , Periodo Preoperatorio , Estudios Prospectivos , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
11.
BMC Med Genomics ; 14(1): 62, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639937

RESUMEN

BACKGROUND: Gene fusions represent promising targets for cancer therapy in lung cancer. Reliable detection of multiple gene fusions is therefore essential. METHODS: Five commercially available parallel sequencing assays were evaluated for their ability to detect gene fusions in eight cell lines and 18 FFPE tissue samples carrying a variety of known gene fusions. Four RNA-based assays and one DNA-based assay were compared; two were hybrid capture-based, TruSight Tumor 170 Assay (Illumina) and SureSelect XT HS Custom Panel (Agilent), and three were amplicon-based, Archer FusionPlex Lung Panel (ArcherDX), QIAseq RNAscan Custom Panel (Qiagen) and Oncomine Focus Assay (Thermo Fisher Scientific). RESULTS: The Illumina assay detected all tested fusions and showed the smallest number of false positive results. Both, the ArcherDX and Qiagen panels missed only one fusion event. Among the RNA-based assays, the Qiagen panel had the highest number of false positive events. The Oncomine Focus Assay (Thermo Fisher Scientific) was the least adequate assay for our purposes, seven fusions were not covered by the assay and two fusions were classified as uncertain. The DNA-based SureSelect XT HS Custom Panel (Agilent) missed three fusions and nine fusions were only called by one software version. Additionally, many false positive fusions were observed. CONCLUSIONS: In summary, especially RNA-based parallel sequencing approaches are potent tools for reliable detection of targetable gene fusions in clinical diagnostics.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Fusión Génica , Neoplasias Pulmonares/genética , Proteínas de Fusión Oncogénica/genética , Análisis de Secuencia de ARN
12.
Tumour Biol ; 31(4): 297-307, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20506051

RESUMEN

Many metastatic cancers recapitulate the epithelial-to-mesenchymal transition (EMT) resulting in enhanced cell motility and invasiveness. The EMT is regulated by several transcription factors, including the zinc finger protein SNAI2, also named Slug, which appears to exert additional functions during development and cancer progression. We have studied the function of SNAI2 in prostate cancer cells. Quantitative RT-PCR analysis showed strong SNAI2 expression particularly in the PC-3 and PC3-16 prostate carcinoma cell lines. Knockdown of SNAI2 by specific siRNA induced changes in EMT markers and inhibited invasion of both cell lines into a matrigel matrix. SNAI2 siRNA-treated cells did not tolerate detachment from the culture plates, likely at least in part due to downregulation of integrin alpha6beta4. SNAI2 knockdown disturbed the microtubular and actin cytoskeletons, especially severely in PC-3 cells, resulting in grossly enlarged, flattened, and sometimes multinuclear cells. Knockdown also decreased cell proliferation, with a prominent G0/G1 arrest in PC3-16. Together, our data imply that SNAI2 exerts strong effects on the cytoskeleton and adhesion of those prostate cancer cells that express it and is necessary for their proliferation and invasiveness.


Asunto(s)
Proliferación Celular , Neoplasias de la Próstata/patología , Factores de Transcripción/fisiología , Actinas/metabolismo , Apoptosis/efectos de los fármacos , Western Blotting , Adhesión Celular , Ciclo Celular , Células Cultivadas , Citoesqueleto/metabolismo , Silenciador del Gen , Humanos , Integrina alfa6beta4/metabolismo , Masculino , Invasividad Neoplásica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción de la Familia Snail , Dedos de Zinc
13.
Cancers (Basel) ; 13(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375555

RESUMEN

Currently available serum biomarkers for pancreatobiliary cancers lack sensitivity and specificity and ultimate diagnosis still requires invasive procedures for histological confirmation. The detection of tumor-specific genetic aberrations with utilization of cell free DNA (cfDNA) is a less invasive approach than traditional tissue biopsies; however, it has not been implemented into clinical routine. In this study, we investigated bile as a liquid biopsy source in pancreatobiliary cancers and compared its potential as cell-free DNA source to plasma. Blood (n = 37) and bile (n = 21) samples were collected from patients affected by pancreatic ductal adenocarcinoma (PDAC) and extrahepatic cholangiocarcinoma (CCA) or with non-malignant biliary obstructions (blood n = 16; bile n = 21). Panel-based next generation sequencing (NGS) and digital droplet PCR (ddPCR) were applied for tumor mutation profiling. NGS results from matched tumor tissues (n = 29) served as comparison. Sequencing of cfDNA from bile resulted in detection of 96.2% of the pathogenic tumor mutations found in matched tissue samples. On the other hand, only 31.6% of pathogenic tumor mutations found in tissue could be detected in plasma. In a direct comparison, only half of the mutations detected in bile cfDNA were concordantly detected in plasma from the same patients. Panel NGS and ddPCR displayed comparable sensitivity. In conclusion, bile is a suitable source of cfDNA for the diagnosis of pancreatobiliary cancer and performs more reliably than plasma. Although primary diagnosis still requires histologic confirmation, bile-derived cfDNA could offer an alternative if tissue sampling is not feasible and might allow less invasive disease monitoring.

14.
Sci Rep ; 9(1): 17365, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31758153

RESUMEN

The progression of colorectal cancer (CRC) is supposedly driven by cancer stem cells (CSC) which are able to self-renew and simultaneously fuel bulk tumour mass with highly proliferative and differentiated tumour cells. However, the CSC-phenotype in CRC is unstable and dependent on environmental cues. Fibroblast growth factor 2 (FGF2) is essential and necessary for the maintenance of self-renewal in adult and embryonic stem cells. Investigating its role in self-renewal in advanced CRC patient-derived organoids, we unveiled that FGF-receptor (FGFR) inhibition prevents organoid formation in very early expanding cells but induces cyst formation when applied to pre-established organoids. Comprehensive transcriptome analyses revealed that the induction of the transcription factor activator-protein-1 (AP-1) together with MAPK activation was most prominent after FGFR-inhibition. These effects resemble mechanisms of an acquired resistance against other described tyrosine kinase inhibitors such as EGF-receptor targeted therapies. Furthermore, we detected elevated expression levels of several self-renewal and stemness-associated genes in organoid cultures with active FGF2 signalling. The combined data assume that CSCs are a heterogeneous population while self-renewal is a common feature regulated by distinct but converging pathways. Finally, we highlight FGF2 signalling as one of numerous components of the complex regulation of stemness in cancer.


Asunto(s)
Autorrenovación de las Células/efectos de los fármacos , Neoplasias del Colon/patología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Organoides/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/fisiología , Organoides/metabolismo , Organoides/patología , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Células Tumorales Cultivadas
15.
Free Radic Biol Med ; 134: 419-428, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30703483

RESUMEN

Oxidative stress and reactivation of long interspersed element-1 (LINE-1) are coincidently observed in bladder cancer (BlCa), but the mechanistic connection between these two oncogenic phenomena is unknown. Previously, we reported increases in oxidative stress and LINE-1 protein (ORF1p) expression in human BlCa tissues. In this study, we measured 5-methylcytosine (5mC), 8-hydroxydeoxyguanosine (8-OHdG), 8-oxoguanosine DNA glycosylase-1 (OGG1), H3K9me3 and HP1α in bladder tissues obtained from BlCa patients. Reactivation of LINE-1 by reactive oxygen species (ROS) through chromatin remodeling was investigated in seven BlCa cell lines. We found that 5mC was decreased, but 8-OHdG, H3K9me3 and HP1α levels were increased in BlCa tissues relative to the adjacent non-cancerous tissues. OGG1, H3K9me3 and HP1α expression in BlCa tissues were positively correlated with 8-OHdG levels. Following H2O2 treatment, LINE-1 transcript expression was increased in VM-CUB-1 and TCCSUP, whereas AluYa5 and AluYb8 transcripts were increased in BFTC905 cells. Basal expression of LINE-1 ORF1p varied among BlCa cell lines from none to very high. H2O2 treatment clearly increased expression of ORF1p in VM-CUB-1, TCCSUP and BFTC905. Chromatin immunoprecipitation experiments revealed that 5'-LINE-1 promoters became further enriched in H3K4me3 and H3K18ac in VM-CUB-1 and BFTC905 cells treated with H2O2. In contrast, 5'-LINE-1 promoters became more enriched in H3K9me3 and H3K27me3 in UM-UC-3 treated with H2O2. In summary, decreased 5mC, but increased 8-OHdG, H3K9me3 and HP1α expression were demonstrated in human BlCa tissues, indicating global DNA hypomethylation, increased oxidative stress and altered histone methylation in BlCa. Chromatin structures were profoundly changed in BlCa cells exposed to ROS, but expression of LINE-1 transcript and protein were at most modestly increased. ROS enhanced expression of full-length LINE-1 elements only in cell lines with pre-existing activation, which was paralleled by increased formation of active chromatin at LINE-1 promoter loci.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Elementos de Nucleótido Esparcido Largo/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Vejiga Urinaria/patología , 8-Hidroxi-2'-Desoxicoguanosina/análogos & derivados , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Anciano , Estudios de Casos y Controles , Cromatina/genética , Homólogo de la Proteína Chromobox 5 , ADN Glicosilasas/metabolismo , Femenino , Humanos , Masculino , Regiones Promotoras Genéticas , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
16.
Methods Mol Biol ; 1655: 97-107, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28889380

RESUMEN

Members of the APOBEC3 (A3) family of enzymes were shown to act in an oncogenic manner in several cancer types. Immunodetection of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) proteins is particularly challenging due to the large sequence homology of these proteins and limited availability of antibodies. Here we combine independent immunoblotting with an in vitro activity assay technique, to detect and categorize specific A3s expressed in urothelial bladder cancer and other cancer cells.


Asunto(s)
Citosina Desaminasa/metabolismo , Neoplasias Urológicas/metabolismo , Desaminasas APOBEC , Catálisis , Línea Celular , Citidina Desaminasa , Citosina Desaminasa/genética , ADN/metabolismo , Activación Enzimática , Humanos , Immunoblotting/métodos , Familia de Multigenes , Mutación , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/genética
17.
Front Microbiol ; 9: 2088, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233553

RESUMEN

The most common mutational signature in urothelial carcinoma (UC), the most common type of urinary bladder cancer is assumed to be caused by the misdirected activity of APOBEC3 (A3) cytidine deaminases, especially A3A or A3B, which are known to normally restrict the propagation of exogenous viruses and endogenous retroelements such as LINE-1 (L1). The involvement of A3 proteins in urothelial carcinogenesis is unexpected because, to date, UC is thought to be caused by chemical carcinogens rather than viral activity. Therefore, we explored the relationship between A3 expression and L1 activity, which is generally upregulated in UC. We found that UC cell lines highly express A3B and in some cases A3G, but not A3A, and exhibit corresponding cytidine deamination activity in vitro. While we observed evidence suggesting that L1 expression has a weak positive effect on A3B and A3G expression and A3B promoter activity, neither efficient siRNA-mediated knockdown nor overexpression of functional L1 elements affected catalytic activity of A3 proteins consistently. However, L1 knockdown diminished proliferation of a UC cell line exhibiting robust endogenous L1 expression, but had little impact on a cell line with low L1 expression levels. Our results indicate that UC cells express A3B at levels exceeding A3A levels by far, making A3B the prime candidate for causing genomic mutations. Our data provide evidence that L1 activation constitutes only a minor and negligible factor involved in induction or upregulation of endogenous A3 expression in UC.

18.
Cancer Genomics Proteomics ; 15(2): 143-151, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29496693

RESUMEN

BACKGROUND/AIM: Reactivation of long interspersed nuclear element-1 (LINE-1) and oxidative stress are suggested to have oncogenic potential to drive tumorigenesis and cancer progression. We previously demonstrated that reactive oxygen species (ROS) caused hypomethylation of LINE-1 elements in bladder cancer cells. In this study, we investigated the expression of LINE-1-encoded protein (ORF1p) and oxidative stress marker 4-hydroxynonenal (4-HNE) in human bladder cancer tissues, as well as induction of ORF1p expression by ROS in bladder cancer cell lines. MATERIALS AND METHODS: Thirty-six cancerous and 15 non-cancerous adjacent tissues were immunohistochemically stained for ORF1p and 4-HNE. ORF1p expression and cell migration were determined in bladder cancer cells exposed to H2O2 Results: ORF1p and 4-HNE expression was higher in cancerous than non-cancerous tissues. Elevated ORF1p expression was associated with increased 4-HNE expression and with advanced tumors. H2O2 provoked oxidative stress and up-regulated ORF1p expression in VM-CUB-1 compared to the untreated control, and to a lesser degree in TCCSUP. H2O2 exposure enhanced cell migration in UM-UC-3, TCCSUP and VM-CUB-1. CONCLUSION: Elevated ORF1p expression is associated with tumor progression. ROS experimentally induce ORF1p expression and promote migration in bladder cancer cells.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Anciano , Movimiento Celular/fisiología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Proteínas/genética , Regulación hacia Arriba , Neoplasias de la Vejiga Urinaria/genética
19.
Epigenomics ; 8(10): 1415-1428, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27624974

RESUMEN

DNA methylation alterations are common in urothelial carcinoma, a prevalent cancer worldwide caused predominantly by chemical carcinogens. Recent studies have proposed sets of hypermethylated genes as promising diagnostic and prognostic biomarkers from urine or tissue samples, which require validation. Other studies have revealed intriguing links between specific carcinogens and DNA methylation alterations in cancer tissues or blood that might clarify carcinogenesis mechanisms and aid prevention. Like DNA methylation alterations, mutations in chromatin regulators are frequent, underlining the importance of epigenetic changes. However, the relations between the two changes and their functions in urothelial carcinogenesis remain unclear. Transcription factor genes with altered methylation deserve particular interest. Elucidating the functional impact of methylation changes is a prerequisite for their therapeutic targeting.


Asunto(s)
Carcinoma/genética , Metilación de ADN , Neoplasias Urológicas/genética , Biomarcadores de Tumor/genética , Carcinoma/terapia , Humanos , Neoplasias Urológicas/terapia
20.
Clin Epigenetics ; 7: 17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798207

RESUMEN

BACKGROUND: Hypomethylation of long interspersed element (LINE)-1 has been observed in tumorigenesis when using degenerate assays, which provide an average across all repeats. However, it is unknown whether individual LINE-1 loci or different CpGs within one specific LINE-1 promoter are equally affected by methylation changes. Conceivably, studying methylation changes at specific LINE-1 may be more informative than global assays for cancer diagnostics. Therefore, with the aim of mapping methylation at individual LINE-1 loci at single-CpG resolution and exploring the diagnostic potential of individual LINE-1 locus methylation, we analyzed methylation at 11 loci by pyrosequencing, next-generation bisulfite sequencing as well as global LINE-1 methylation in bladder, colon, pancreas, prostate, and stomach cancers compared to paired normal tissues and in blood samples from some of the patients compared to healthy donors. RESULTS: Most (72/80) tumor samples harbored significant methylation changes at at least one locus. Notably, our data revealed not only the expected hypomethylation but also hypermethylation at some loci. Specific CpGs within the LINE-1 consensus sequence appeared preferentially hypomethylated suggesting that these could act as seeds for hypomethylation. In silico analysis revealed that these CpG sites more likely faced the histones in the nucleosome. Multivariate logistic regression analysis did not reveal a significant clinical advantage of locus-specific methylation markers over global methylation markers in distinguishing tumors from normal tissues. CONCLUSIONS: Methylation changes at individual LINE-1 loci are heterogeneous, whereas specific CpGs within the consensus sequence appear to be more prone to hypomethylation. With a broader selection of loci, locus-specific LINE-1 methylation could become a tool for tumor detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA