Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 17895, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559388

RESUMEN

Optical generation of compact magnetized plasma structures is studied in the moderate intensity domain. A sub-ns laser beam irradiated snail-shaped targets with the intensity of about 1016 W/cm2. With a neat optical diagnostics, a sub-megagauss magnetized plasmoid is traced inside the target. On the observed hydrodynamic time scale, the hot plasma formation achieves a theta-pinch-like density and magnetic field distribution, which implodes into the target interior. This simple and elegant plasma magnetization scheme in the moderate-intensity domain is of particular interest for fundamental astrophysical-related studies and for development of future technologies.

2.
Rev Sci Instrum ; 88(4): 045109, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28456257

RESUMEN

A system of precise pulse synchronization between a single-shot large-scale laser exploiting an acousto-optical modulator and a femtosecond high repetition rate laser is reported in this article. This opto-electronical system has been developed for synchronization of the sub-nanosecond kJ-class iodine photodissociation laser system (Prague Asterix Laser System-PALS) with the femtosecond 25-TW Ti:sapphire (Ti:Sa) laser operating at a repetition rate 1 kHz or 10 Hz depending on the required energy level of output pulses. At 1 kHz synchronization regime, a single femtosecond pulse of duration about 45 fs and a small energy less than 1 mJ are exploited as a probe beam for irradiation of a three-frame interferometer, while at 10 Hz repetition rate a single femtosecond pulse with higher energy about 7-10 mJ is exploited as a probe beam for irradiation of a two-channel polaro-interferometer. The synchronization accuracy ±100 ps between the PALS and the Ti:Sa laser pulses has been achieved in both regimes of synchronization. The femtosecond interferograms of laser-produced plasmas obtained by the three-frame interferometer and the femtosecond polarimetric images obtained by the two-frame polaro-interferometer confirm the full usefulness and correct functionality of the proposed method of synchronization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA