Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Atmos Environ (1994) ; : 119367, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36092473

RESUMEN

We present the first NO2 measurements from the Nadir Mapper of Ozone Mapping and Profiler Suite (OMPS) instrument aboard the NOAA-20 satellite. NOAA-20 OMPS was launched in November 2017, with a nadir resolution of 17 × 13 km2 similar to the Ozone Monitoring Instrument (OMI). The retrieval of NOAA-20 NO2 vertical columns were achieved through the Direct Vertical Column Fitting (DVCF) algorithm, which was uniquely designed and successfully used to retrieve NO2 from OMPS aboard Suomi National Polar-orbiting Partnership (SNPP) spacecraft, predecessor to NOAA-20. Observations from NOAA-20 reveal a 20-40% decline in regional tropospheric NO2 in January-April 2020 due to COVID-19 lockdown, consistent with the findings from other satellite observations. The NO2 retrievals are preliminarily validated against ground-based Pandora spectrometer measurements over the New York City area as well as other U.S. Pandora locations. It shows OMPS total columns tend to be lower in polluted urban regions and higher in clean areas/episodes associated with relatively small NO2 total columns, but generally the agreement is within ±2.5 × 1015 molecules/cm2. Comparisons of stratospheric NO2 columns exhibit the excellent agreement between OMPS and OMI, validating OMPS capability in capturing the stratospheric background accurately. These results demonstrate the high sensitivity of OMPS to tropospheric NO2 and highlight its potential use for extending the long-term global NO2 record.

2.
Sensors (Basel) ; 9(4): 2968-75, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22574057

RESUMEN

Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991-2005). A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March-April (weeks 8-13 of the year), several months in advance of the rice harvest. Stepwise principal component regression (PCR) was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost.

3.
J Trop Med ; 2010: 914094, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21274441

RESUMEN

Relationships between yearly malaria incidence and (1) climate data from weather station and (2) satellite-based vegetation health (VH) indices were investigated for prediction of malaria vector activities in Bangladesh. Correlation analysis of percent of malaria cases with Advanced Very High Resolution Radiometer- (AVHRR-) based VH indices represented by the vegetation condition index (VCI-moisture condition) and the temperature condition index (TCI-estimates thermal condition) and with rainfall, relative humidity, and temperature from ground-based meteorological stations. Results show that climate data from weather stations are poorly correlated and are not applicable to estimate prevalence in Bangladesh. The study also has shown that AVHRR-based vegetation health (VH) indices are highly applicable for malaria trend assessment and also for the estimation of the total number of malaria cases in Bangladesh for the period of 1992-2001.

4.
Am J Trop Med Hyg ; 82(6): 1004-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20519592

RESUMEN

Satellite data may be used to map climatic conditions conducive to malaria outbreaks, assisting in the targeting of public health interventions to mitigate the worldwide increase in incidence of the mosquito-transmitted disease. This work analyzes correlation between malaria cases and vegetation health (VH) indices derived from satellite remote sensing for each week over a period of 14 years for Bandarban, Bangladesh. Correlation analysis showed that years with a high summer temperature condition index (TCI) tended to be those with high malaria incidence. Principal components regression was performed on patterns of weekly TCI during each of the two annual malaria seasons to construct a model as a function of the TCI. These models reduced the malaria estimation error variance by 57% if first-peak (June-July) TCI was used as the estimator and 74% if second-peak (August-September) was used, compared with an estimation of average number of malaria cases for each year.


Asunto(s)
Malaria/epidemiología , Plantas , Nave Espacial , Animales , Anopheles , Bangladesh/epidemiología , Ecosistema , Humanos , Malaria/transmisión , Modelos Biológicos , Reproducibilidad de los Resultados , Factores de Riesgo , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA