Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(2): e202302708, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37732540

RESUMEN

Vinyl ethers are valuable synthetic intermediates which are also found as natural products, including aflatoxins, rifamycins and plasmalogens. The latter are ubiquitous phospholipids in human cells and contain a vinyl ether moiety with specifically Z configuration. Although numerous methods are available for synthesis of vinyl ethers, there is a lack of methods for obtaining Z isomers of molecules of the type RCH=CHOR' that are applicable to plasmalogens. A variant of the Peterson reaction is described that generates such molecules with very high stereoselectivity (Z/E ratio: 99 : 1). (R,R)/(S,S)-1-alkoxy-2-hydroxyalkylsilanes were synthesized from 1-trimethylsilylalkynes by a sequence of reduction with di-isobutylaluminium hydride to a (Z)-1-trimethylsilylalkene, epoxidation of the alkene to a 2-trimethylsilyl-3-substituted epoxide and regioselective, boron-trifluoride catalyzed ring-opening of the epoxide by reaction with an alcohol. Conversion of the (R,R)/(S,S)-1-alkoxy-2-hydroxyalkylsilanes to vinyl ethers (RCH=CHOR') was achieved under basic conditions as in a standard Peterson reaction. However, near exclusive formation of a Z vinyl ether was only achieved when the reaction was performed using potassium hydride in the non-polar solvent α,α,α-trifluorotoluene, more polar solvents giving increasing amounts of the E isomer. The sequence described embraces a variety of substituents and precursors, proceeds in overall high yield and is readily scalable.

2.
J Heterocycl Chem ; 58(4): 947-951, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34824482

RESUMEN

Substituted aminopyrimidines are an important class of compounds, in part because they frequently show biological activity. Facile synthesis of polysubstituted aminopyrimidines is highly desirable for the synthesis of screening libraries. We describe a route to 4,6-diamino-5-alkoxypyrimidines via a SNAr-alkylation-SNAr sequence from readily available 4,6-dichloro-5-methoxypyrimidine, which allows the synthesis of such compounds with regiochemical control. The extension of this approach to alkylating agents bearing amino substituents led to unexpected and, in some cases, unprecedented products resulting from intramolecular SNAr cyclization and subsequent fragmentation.

3.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32444470

RESUMEN

Anaerobic degradation of polycyclic aromatic hydrocarbons has been investigated mostly with naphthalene as a model compound. Naphthalene degradation by sulfate-reducing bacteria proceeds via carboxylation to 2-naphthoic acid, formation of a coenzyme A thioester, and subsequent reduction to 5,6,7,8-tetrahydro-2-naphthoyl-coenzyme A (THNCoA), which is further reduced to hexahydro-2-naphthoyl-CoA (HHNCoA) by tetrahydronaphthoyl-CoA reductase (THNCoA reductase), an enzyme similar to class I benzoyl-CoA reductases. When analyzing THNCoA reductase assays with crude cell extracts and NADH as electron donor via liquid chromatography-mass spectrometry (LC-MS), scanning for putative metabolites, we found that small amounts of the product of an HHNCoA hydratase were formed in the assays, but the downstream conversion by an NAD+-dependent ß-hydroxyacyl-CoA dehydrogenase was prevented by the excess of NADH in those assays. Experiments with alternative electron donors indicated that 2-oxoglutarate can serve as an indirect electron donor for the THNCoA-reducing system via a 2-oxoglutarate:ferredoxin oxidoreductase. With 2-oxoglutarate as electron donor, THNCoA was completely converted and further metabolites resulting from subsequent ß-oxidation-like reactions and hydrolytic ring cleavage were detected. These metabolites indicate a downstream pathway with water addition to HHNCoA and ring fission via a hydrolase acting on a ß'-hydroxy-ß-oxo-decahydro-2-naphthoyl-CoA intermediate. Formation of the downstream intermediate cis-2-carboxycyclohexylacetyl-CoA, which is the substrate for the previously described lower degradation pathway leading to the central metabolism, completes the anaerobic degradation pathway of naphthalene.IMPORTANCE Anaerobic degradation of polycyclic aromatic hydrocarbons is poorly investigated despite its significance in anoxic sediments. Using alternative electron donors for the 5,6,7,8-tetrahydro-2-naphthoyl-CoA reductase reaction, we observed intermediary metabolites of anaerobic naphthalene degradation via in vitro enzyme assays with cell extracts of anaerobic naphthalene degraders. The identified metabolites provide evidence that ring reduction terminates at the stage of hexahydro-2-naphthoyl-CoA and a sequence of ß-oxidation-like degradation reactions starts with a hydratase acting on this intermediate. The final product of this reaction sequence was identified as cis-2-carboxycyclohexylacetyl-CoA, a compound for which a further downstream degradation pathway has recently been published (P. Weyrauch, A. V. Zaytsev, S. Stephan, L. Kocks, et al., Environ Microbiol 19:2819-2830, 2017, https://doi.org/10.1111/1462-2920.13806). Our study reveals the first ring-cleaving reaction in the anaerobic naphthalene degradation pathway. It closes the gap between the reduction of the first ring of 2-naphthoyl-CoA by 2-napthoyl-CoA reductase and the lower degradation pathway starting from cis-2-carboxycyclohexylacetyl-CoA, where the second ring cleavage takes place.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coenzima A/metabolismo , Deltaproteobacteria/enzimología , Naftalenos/metabolismo , Oxidorreductasas/metabolismo , Anaerobiosis , Oxidación-Reducción
4.
Molecules ; 25(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322563

RESUMEN

The synthesis of a molecularly diverse library of tetrasubstituted alkenes containing a barbiturate motif is described. Base-induced condensation of N1-substituted pyrimidine-2,4,6(1H,3H,5H)-triones with 5-(bis(methylthio)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione gave 3-substituted 5-(methylthio)-2H-pyrano[2,3-d]pyrimidine-2,4,7(1H,3H)-triones ('pyranopyrimidinones'), regioselectively. A sequence of reactions involving ring-opening of the pyran moiety, displacement of the methylthio group with an amine, re-formation of the pyran ring, and after its final cleavage with an amine, gave tetrasubstituted alkenes (3-amino-3-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)propanamides) with a diversity of substituents. Cleavage of the pyranopyrimidinones with an aniline was facilitated in 2,2,2-trifluoroethanol under microwave irradiation. Compounds were tested against Escherichia coli, Staphylococcus aureus, the yeast Schizosaccharomyces pombe, and the pathogenic fungus Candida albicans. No compounds exhibited activity against E. coli, whilst one compound was weakly active against S. aureus. Three compounds were strongly active against S. pombe, but none was active against C. albicans.


Asunto(s)
Alquenos/química , Antibacterianos/farmacología , Antifúngicos/farmacología , Bioensayo/métodos , Pruebas de Sensibilidad Microbiana , Barbitúricos/síntesis química , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Concentración 50 Inhibidora , Conformación Molecular , Piranos , Schizosaccharomyces/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Trifluoroetanol/química
5.
Phys Chem Chem Phys ; 21(3): 1160-1171, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30620029

RESUMEN

Unsaturated 1,4-dicarbonyl compounds, such as 2-butenedial and 4-oxo-2-pentenal are produced in the atmospheric boundary layer from the oxidation of aromatic compounds and furans. These species are expected to undergo rapid photochemical processing, affecting atmospheric composition. In this study, the photochemistry of (E)-2-butenedial and both E and Z isomers of 4-oxo-2-pentenal was investigated under natural sunlight conditions at the large outdoor atmospheric simulation chamber EUPHORE. Photochemical loss rates, relative to j(NO2), are determined to be j((E)-2-butenedial)/j(NO2) = 0.14 (±0.02), j((E)-4-oxo-2-pentenal)/j(NO2) = 0.18 (±0.01), and j((Z)-4-oxo-2-pentenal)/j(NO2) = 0.20 (±0.03). The major products detected for both species are a furanone (30-42%) and, for (E)-2-butenedial, maleic anhydride (2,5-furandione) (12-14%). The mechanism appears to proceed predominantly via photoisomerization to a ketene-enol species following γ-H abstraction. The lifetimes of the ketene-enol species in the dark from 2-butenedial and 4-oxo-2-pentenal are determined to be 465 s and 235 s, respectively. The ketene-enol can undergo ring closure to yield the corresponding furanone, or further unimolecular rearrangement which can subsequently form maleic anhydride. A minor channel (10-15%) also appears to form CO directly. This is presumed to be via a molecular elimination route of an initial biradical intermediate formed in photolysis, with an unsaturated carbonyl (detected here but not quantified) as co-product. α-Dicarbonyl and radical yields are very low, which has implications for ozone production from the photo-oxidation of unsaturated 1,4-dicarbonyls in the boundary layer. Photochemical removal is determined to be the major loss process for these species in the boundary layer with lifetimes of the order of 10-15 minutes, compared to >3 hours for reaction with OH.

6.
Org Biomol Chem ; 16(11): 1843-1850, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29469144

RESUMEN

ATAD2 is an ATPase that is overexpressed in a variety of cancers and associated with a poor patient prognosis. This protein has been suggested to function as a cofactor for a range of transcription factors, including the proto-oncogene MYC and the androgen receptor. ATAD2 comprises an ATPase domain, implicated in chromatin remodelling, and a bromodomain which allows it to interact with acetylated histone tails. Dissection of the functional roles of these two domains would benefit from the availability of selective, cell-permeable pharmacological probes. An in silico evaluation of the 3D structures of various bromodomains suggested that developing small molecule ligands for the bromodomain of ATAD2 is likely to be challenging, although recent reports have shown that ATAD2 bromodomain ligands can be identified. We report a structure-guided fragment-based approach to identify lead compounds for ATAD2 bromodomain inhibitor development. Our findings indicate that the ATAD2 bromodomain can accommodate fragment hits (Mr < 200) that yield productive structure-activity relationships, and structure-guided design enabled the introduction of selectivity over BRD4.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Diseño de Fármacos , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas de Ciclo Celular , Diseño Asistido por Computadora , Proteínas de Unión al ADN/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Nucleares/química , Unión Proteica , Dominios Proteicos/efectos de los fármacos , Proto-Oncogenes Mas , Factores de Transcripción/química
7.
Environ Microbiol ; 19(7): 2819-2830, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28574200

RESUMEN

The cyclohexane derivative cis-2-(carboxymethyl)cyclohexane-1-carboxylic acid [(1R,2R)-/(1S,2S)-2-(carboxymethyl)cyclohexane-1-carboxylic acid] has previously been identified as metabolite in the pathway of anaerobic degradation of naphthalene by sulfate-reducing bacteria. We tested the corresponding CoA esters of isomers and analogues of this compound for conversion in cell free extracts of the anaerobic naphthalene degraders Desulfobacterium strain N47 and Deltaproteobacterium strain NaphS2. Conversion was only observed for the cis-isomer, verifying that this is a true intermediate and not a dead-end product. Mass-spectrometric analyses confirmed that conversion is performed by an acyl-CoA dehydrogenase and a subsequent hydratase yielding an intermediate with a tertiary hydroxyl-group. We propose that a novel kind of ring-opening lyase is involved in the further catabolic pathway proceeding via pimeloyl-CoA. In contrast to degradation pathways of monocyclic aromatic compounds where ring-cleavage is achieved via hydratases, this lyase might represent a new ring-opening strategy for the degradation of polycyclic compounds. Conversion of the potential downstream metabolites pimeloyl-CoA and glutaryl-CoA was proved in cell free extracts, yielding 2,3-dehydropimeloyl-CoA, 3-hydroxypimeloyl-CoA, 3-oxopimeloyl-CoA, glutaconyl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA and acetyl-CoA as observable intermediates. This indicates a link to central metabolism via ß-oxidation, a non-decarboxylating glutaryl-CoA dehydrogenase and a subsequent glutaconyl-CoA decarboxylase.


Asunto(s)
Acilcoenzima A/metabolismo , Deltaproteobacteria/metabolismo , Naftalenos/metabolismo , Acetilcoenzima A/biosíntesis , Acilcoenzima A/biosíntesis , Acil-CoA Deshidrogenasa/metabolismo , Anaerobiosis , Sistema Libre de Células/metabolismo , Liasas/metabolismo , Redes y Vías Metabólicas , Oxidación-Reducción
8.
Phys Chem Chem Phys ; 19(36): 25080-25085, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28880033

RESUMEN

The shapes of macromolecules and their complexes with small molecules are often determined by extended networks of hydrogen bonds. Here, for the first time, we provide a detailed description of a cooperative pair of hydrogen bonds to an individual molecule of urea. The structure and properties of a gas phase complex formed between urea and isocyanic acid are characterised through microwave spectroscopy and ab initio calculations at the CCSD(T)(F12*)/aug-cc-pVTZ level.

9.
Br J Cancer ; 115(6): 682-90, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27529512

RESUMEN

BACKGROUND: The phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway is commonly deregulated in human cancer, hence many PI3K and mTOR inhibitors have been developed and have now reached clinical trials. Similarly, CDKs have been investigated as cancer drug targets. METHODS: We have synthesised and characterised a series of 6-aminopyrimidines identified from a kinase screen that inhibit PI3K and/or mTOR and/or CDK2. Kinase inhibition, tumour cell growth, cell cycle distribution, cytotoxicity and signalling experiments were undertaken in HCT116 and HT29 colorectal cancer cell lines, and in vivo HT29 efficacy studies. RESULTS: 2,6-Diaminopyrimidines with an O(4)-cyclohexylmethyl substituent and a C-5-nitroso or cyano group (1,2,5) induced cell cycle phase alterations and were growth inhibitory (GI50<20 µM). Compound 1, but not 2 or 5, potently inhibits CDK2 (IC50=0.1 nM) as well as PI3K, and was cytotoxic at growth inhibitory concentrations. Consistent with kinase inhibition data, compound 1 reduced phospho-Rb and phospho-rS6 at GI50 concentrations. Combination of NU6102 (CDK2 inhibitor) and pictilisib (GDC-0941; pan-PI3K inhibitor) resulted in synergistic growth inhibition, and enhanced cytotoxicity in HT29 cells in vitro and HT29 tumour growth inhibition in vivo. CONCLUSIONS: These studies identified a novel series of mixed CDK2/PI3K inhibitors and demonstrate that dual targeting of CDK2 and PI3K can result in enhanced antitumour activity.


Asunto(s)
Adenocarcinoma/patología , Neoplasias Colorrectales/patología , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Terapia Molecular Dirigida , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Adenocarcinoma/enzimología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/enzimología , Quinasa 2 Dependiente de la Ciclina/fisiología , Humanos , Ratones , Ratones Desnudos , Proteínas de Neoplasias/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacología , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Malar J ; 15(1): 535, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27821169

RESUMEN

BACKGROUND: Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. RESULTS: Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. CONCLUSIONS: Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Proteínas Mutantes/metabolismo , Quinasas Relacionadas con NIMA/metabolismo , Plasmodium falciparum/enzimología , Purinas/metabolismo , Sulfonamidas/metabolismo , Espectrometría de Masas , Proteínas Mutantes/genética , Quinasas Relacionadas con NIMA/genética
11.
Angew Chem Int Ed Engl ; 55(38): 11664-7, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27503670

RESUMEN

Benzylsuccinate synthase is a glycyl radical enzyme that initiates anaerobic toluene metabolism by adding fumarate to the methyl group of toluene to yield (R)-benzylsuccinate. To investigate whether the reaction occurs with retention or inversion of configuration at the methyl group of toluene, we synthesized both enantiomers of chiral toluene with all three H isotopes in their methyl groups. The chiral toluenes were converted into benzylsuccinates preferentially containing (2) H and (3) H at their benzylic C atoms, owing to a kinetic isotope effect favoring hydrogen abstraction from the methyl groups. The configuration of the products was analyzed by enzymatic CoA-thioester synthesis and stereospecific oxidation using enzymes involved in benzylsuccinate degradation. Assessment of the configurations of the benzylsuccinate isomers based on loss or retention of tritium showed that inversion of configuration at the methyl group occurs when the chiral toluenes react with fumarate.


Asunto(s)
Liasas de Carbono-Carbono/metabolismo , Succinatos/metabolismo , Tolueno/química , Fumaratos/química , Oxidación-Reducción , Estereoisomerismo , Succinatos/química , Tolueno/metabolismo , Tritio/química
12.
Chemistry ; 21(16): 6132-43, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25754795

RESUMEN

Model studies of prebiotic chemistry have revealed compelling routes for the formation of the building blocks of proteins and RNA, but not DNA. Today, deoxynucleotides required for the construction of DNA are produced by reduction of nucleotides catalysed by ribonucleotide reductases, which are radical enzymes. This study considers potential non-enzymatic routes via intermediate radicals for the ancient formation of deoxynucleotides. In this context, several mechanisms for ribonucleotide reduction, in a putative H2 S/HS(.) environment, are characterized using computational chemistry. A bio-inspired mechanistic cycle involving a keto intermediate and HSSH production is found to be potentially viable. An alternative pathway, proceeding through an enol intermediate is found to exhibit similar energetic requirements. Non-cyclical pathways, in which HSS(.) is generated in the final step instead of HS(.) , show a markedly increased thermodynamic driving force (ca. 70 kJ mol(-1) ) and thus warrant serious consideration in the context of the prebiotic ribonucleotide reduction.


Asunto(s)
ADN/química , Desoxirribonucleótidos/química , Radicales Libres/química , Origen de la Vida , Ribonucleótidos/química , Sulfuro de Hidrógeno/química , Modelos Moleculares , Oxidación-Reducción , ARN/química
13.
Org Biomol Chem ; 13(18): 5279-84, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25858034

RESUMEN

Regioselective sulfamoylation of primary hydroxyl groups enabled a 5-step synthesis (overall yield 17%) of the first reported small molecule inhibitor of sulfatase-1 and 2, ((2S,3R,4R,5S,6R)-4,5-dihydroxy-2-methoxy-6-((sulfamoyloxy)methyl)tetrahydro-2H-pyran-3-yl)sulfamic acid, which obviated the use of hydroxyl protecting groups and is a marked improvement on the reported 9-step synthesis (overall yield 9%) employing hazardous trifluoromethylsulfonyl azide. The sulfamoylation methodology was used to prepare a range of derivatives of 1, and inhibition data was generated for Sulf-2, ARSA and ARSB.


Asunto(s)
Frío , Inhibidores Enzimáticos/síntesis química , Sulfatasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Estereoisomerismo
14.
Appl Environ Microbiol ; 80(24): 7592-603, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261521

RESUMEN

The betaproteobacteria "Aromatoleum aromaticum" pCyN1 and "Thauera" sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted "A. aromaticum" pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with "Thauera" sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. "A. aromaticum" pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of "Thauera" sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate ß-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA.


Asunto(s)
Betaproteobacteria/metabolismo , Fumaratos/metabolismo , Monoterpenos/metabolismo , Anaerobiosis , Proteínas Bacterianas/metabolismo , Betaproteobacteria/enzimología , Cimenos , Desnitrificación , Hidroxilación , Oxidación-Reducción , Oxidorreductasas/metabolismo , Ácido Succínico/metabolismo , Thauera/enzimología , Thauera/metabolismo
15.
Chemistry ; 20(8): 2311-7, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24458729

RESUMEN

Small-molecule drug discovery requires reliable synthetic methods for attaching amino compounds to heterocyclic scaffolds. Trifluoroacetic acid-2,2,2-trifluoroethanol (TFA-TFE) is as an effective combination for achieving SN Ar reactions between anilines and heterocycles (e.g., purines and pyrimidines) substituted with a leaving group (fluoro-, chloro-, bromo- or alkylsulfonyl). This method provides a variety of compounds containing a "kinase-privileged fragment" associated with potent inhibition of kinases. TFE is an advantageous solvent because of its low nucleophilicity, ease of removal and ability to solubilise polar substrates. Furthermore, TFE may assist the breakdown of the Meisenheimer-Jackson intermediate by solvating the leaving group. TFA is a necessary and effective acidic catalyst, which activates the heterocycle by N-protonation without deactivating the aniline by conversion into an anilinium species. The TFA-TFE methodology is compatible with a variety of functional groups and complements organometallic alternatives, which are often disadvantageous because of the expense of reagents, the frequent need to explore diverse sets of reaction conditions, and problems with product purification. In contrast, product isolation from TFA-TFE reactions is straightforward: evaporation of the reaction mixture, basification and chromatography affords analytically pure material. A total of 45 examples are described with seven discrete heterocyclic scaffolds and 2-, 3- and 4-substituted anilines giving product yields that are normally in the range 50-90 %. Reactions can be performed with either conventional heating or microwave irradiation, with the latter often giving improved yields.


Asunto(s)
Aminas/química , Compuestos de Anilina/química , Compuestos Heterocíclicos/química , Purinas/química , Pirimidinas/química , Ácido Trifluoroacético/química , Trifluoroetanol/química , Catálisis , Microondas , Estructura Molecular
16.
Org Biomol Chem ; 12(1): 141-8, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24213855

RESUMEN

Recent studies have shown that irreversible inhibition of Nek2 kinase [(Never in mitosis gene a)-related kinase 2], overexpression of which is observed in several cancers, can be achieved using Michael acceptors containing an ethynyl group, which target the enzyme's cysteine 22 residue lying near the catalytic site. The model studies described herein demonstrate an analogous capture of the ethynyl moiety in a series of ethynyl-heterocycles (e.g. 6-ethynyl-N-phenyl-9H-purin-2-amine) by N-acetylcysteine methyl ester in the presence of 1,4-diazabicyclo[2.2.2]octane in either dimethyl sulfoxide or N,N-dimethylformamide. Kinetic studies showed a 50-fold range in reactivity with 7-ethynyl-N-phenyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine being the most reactive compound, whereas 4-ethynyl-N-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine was the least reactive. Studies of the isomeric compounds, 2-(3-((6-ethynyl-7-methyl-7H-purin-2-yl)amino)phenyl)acetamide and 2-(3-((6-ethynyl-9-methyl-9H-purin-2-yl)amino)phenyl)acetamide, revealed the N(7)-methyl isomer to be 5-fold more reactive than the 9-methyl isomer, which is ascribed to a buttressing effect in the N(7)-methyl compound. Comparison of the crystal structures of these isomers showed that the ethynyl group is significantly displaced away from the methyl group exclusively in the N(7)-methyl isomer with an sp(2) bond angle of 124°, whereas the corresponding angle in the N(9)-methyl isomer was the expected 120°. The results of this study indicate heterocyclic scaffolds that are likely to be more promising for inhibition of Nek2 and other kinases containing a reactive cysteine.


Asunto(s)
Compuestos Heterocíclicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Purinas/farmacología , Compuestos de Sulfhidrilo/química , Cristalografía por Rayos X , Compuestos Heterocíclicos/química , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Quinasas Relacionadas con NIMA , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Purinas/química
17.
Proc Natl Acad Sci U S A ; 108(45): 18260-5, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21969545

RESUMEN

Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B(12), coenzyme F(430), and heme d(1) underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d(1) heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d(1) heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.


Asunto(s)
Hemo/análogos & derivados , Cromatografía Líquida de Alta Presión , Hemo/síntesis química , Hemo/química , Hemo/metabolismo , Oxígeno/metabolismo
18.
J Biochem ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987935

RESUMEN

3,3,3-Trifluoro-1,2-propanediol undergoes complete defluorination in two distinct steps: first, the conversion into 3,3,3-trifluoropropionaldehyde catalyzed by adenosylcobalamin (coenzyme B12)-dependent diol dehydratase; second, non-enzymatic elimination of all three fluorides from this aldehyde to afford malonic semialdehyde (3-oxopropanoic acid), which is decarboxylated to acetaldehyde. Diol dehydratase accepts 3,3,3-trifluoro-1,2-propanediol as a relatively poor substrate, albeit without significant mechanism-based inactivation of the enzyme during catalysis. Optical and EPR spectra revealed the steady-state formation of cob(II)alamin and a substrate-derived intermediate organic radical (3,3,3-trifluoro-1,2-dihydroxyprop-1-yl). The coenzyme undergoes Co-C bond homolysis initiating a sequence of reaction by the generally accepted pathway via intermediate radicals. However, the greater steric size of trifluoromethyl and especially its negative impact on the stability of an adjacent radical center compared to a methyl group has implications for the mechanism of the diol dehydratase reaction. Nevertheless, 3,3,3-trifluoropropionaldehyde is formed by the normal diol dehydratase pathway, but then undergoes non-enzymatic conversion into acetaldehyde, probably via 3,3-difluoropropenal and malonic semialdehyde.

19.
Environ Microbiol ; 15(6): 1832-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23336264

RESUMEN

Polycyclic aromatic hydrocarbons are among the most hazardous environmental pollutants. However, in contrast to aerobic degradation, the respective degradation pathways in anaerobes are greatly unknown which has so far prohibited many environmental investigations. In this work, we studied the enzymatic dearomatization reactions involved in the degradation of the PAH model compounds naphthalene and 2-methylnaphthalene in the sulfate-reducing enrichment culture N47. Cell extracts of N47 grown on naphthalene catalysed the sodium dithionite-dependent four-electron reduction of the key intermediate 2-naphthoyl-coenzyme A (NCoA) to 5,6,7,8-tetrahydro-2-naphthoyl-CoA (THNCoA). The NCoA reductase activity was independent of ATP and was, surprisingly, not sensitive to oxygen. In cell extracts in the presence of various electron donors the product THNCoA was further reduced by a two-electron reaction to most likely a conjugated hexahydro-2-naphthoyl-CoA isomer (HHNCoA). The reaction assigned to THNCoA reductase strictly depended on ATP and was oxygen-sensitive with a half-life time between 30 s and 1 min when exposed to air. The rate was highest with NADH as electron donor. The results indicate that two novel and completely different dearomatizing ring reductases are involved in anaerobic naphthalene degradation. While the THNCoA reducing activity shows some properties of ATP-dependent class I benzoyl-CoA reductases, NCoA reduction appears to be catalysed by a previously unknown class of dearomatizing aryl-carboxyl-CoA reductases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Bacterias/enzimología , Naftalenos/metabolismo , Anaerobiosis , Coenzima A/metabolismo , Contaminantes Ambientales/metabolismo , Activación Enzimática/efectos de los fármacos , Semivida , Redes y Vías Metabólicas , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno/farmacología
20.
Org Biomol Chem ; 11(11): 1874-8, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23381666

RESUMEN

Purines protected at N-9 by p-methoxybenzyl are methylated or ethylated in 2,2,2-trifluoroethanol at N-7 by trimethyl- or triethyl-oxonium borofluorate, respectively. Subjecting the resulting cationic species to microwave irradiation releases an N(7)-methyl- or ethyl-purine. This one-pot procedure is an efficient regiospecific method applicable to diverse substrates.


Asunto(s)
Purinas/química , Trifluoroetanol/química , Cristalografía por Rayos X , Metilación , Microondas , Modelos Moleculares , Estructura Molecular , Purinas/síntesis química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA