Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioinformatics ; 40(8)2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39067017

RESUMEN

MOTIVATION: Software is vital for the advancement of biology and medicine. Impact evaluations of scientific software have primarily emphasized traditional citation metrics of associated papers, despite these metrics inadequately capturing the dynamic picture of impact and despite challenges with improper citation. RESULTS: To understand how software developers evaluate their tools, we conducted a survey of participants in the Informatics Technology for Cancer Research (ITCR) program funded by the National Cancer Institute (NCI). We found that although developers realize the value of more extensive metric collection, they find a lack of funding and time hindering. We also investigated software among this community for how often infrastructure that supports more nontraditional metrics were implemented and how this impacted rates of papers describing usage of the software. We found that infrastructure such as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers seemed to be associated with increased mention rates. Analysing more diverse metrics can enable developers to better understand user engagement, justify continued funding, identify novel use cases, pinpoint improvement areas, and ultimately amplify their software's impact. Challenges are associated, including distorted or misleading metrics, as well as ethical and security concerns. More attention to nuances involved in capturing impact across the spectrum of biomedical software is needed. For funders and developers, we outline guidance based on experience from our community. By considering how we evaluate software, we can empower developers to create tools that more effectively accelerate biological and medical research progress. AVAILABILITY AND IMPLEMENTATION: More information about the analysis, as well as access to data and code is available at https://github.com/fhdsl/ITCR_Metrics_manuscript_website.


Asunto(s)
Investigación Biomédica , Programas Informáticos , Investigación Biomédica/métodos , Humanos , Estados Unidos , Biología Computacional/métodos
2.
Nature ; 614(7946): 34, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36720942
3.
PLoS Genet ; 14(12): e1007752, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586411

RESUMEN

The BRCA Challenge is a long-term data-sharing project initiated within the Global Alliance for Genomics and Health (GA4GH) to aggregate BRCA1 and BRCA2 data to support highly collaborative research activities. Its goal is to generate an informed and current understanding of the impact of genetic variation on cancer risk across the iconic cancer predisposition genes, BRCA1 and BRCA2. Initially, reported variants in BRCA1 and BRCA2 available from public databases were integrated into a single, newly created site, www.brcaexchange.org. The purpose of the BRCA Exchange is to provide the community with a reliable and easily accessible record of variants interpreted for a high-penetrance phenotype. More than 20,000 variants have been aggregated, three times the number found in the next-largest public database at the project's outset, of which approximately 7,250 have expert classifications. The data set is based on shared information from existing clinical databases-Breast Cancer Information Core (BIC), ClinVar, and the Leiden Open Variation Database (LOVD)-as well as population databases, all linked to a single point of access. The BRCA Challenge has brought together the existing international Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium expert panel, along with expert clinicians, diagnosticians, researchers, and database providers, all with a common goal of advancing our understanding of BRCA1 and BRCA2 variation. Ongoing work includes direct contact with national centers with access to BRCA1 and BRCA2 diagnostic data to encourage data sharing, development of methods suitable for extraction of genetic variation at the level of individual laboratory reports, and engagement with participant communities to enable a more comprehensive understanding of the clinical significance of genetic variation in BRCA1 and BRCA2.


Asunto(s)
Bases de Datos Genéticas , Genes BRCA1 , Genes BRCA2 , Variación Genética , Alelos , Neoplasias de la Mama/genética , Bases de Datos Genéticas/ética , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Difusión de la Información/ética , Difusión de la Información/legislación & jurisprudencia , Masculino , Mutación , Neoplasias Ováricas/genética , Penetrancia , Fenotipo , Factores de Riesgo
4.
ArXiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37332562

RESUMEN

Software is vital for the advancement of biology and medicine. Through analysis of usage and impact metrics of software, developers can help determine user and community engagement. These metrics can be used to justify additional funding, encourage additional use, and identify unanticipated use cases. Such analyses can help define improvement areas and assist with managing project resources. However, there are challenges associated with assessing usage and impact, many of which vary widely depending on the type of software being evaluated. These challenges involve issues of distorted, exaggerated, understated, or misleading metrics, as well as ethical and security concerns. More attention to the nuances, challenges, and considerations involved in capturing impact across the diverse spectrum of biological software is needed. Furthermore, some tools may be especially beneficial to a small audience, yet may not have comparatively compelling metrics of high usage. Although some principles are generally applicable, there is not a single perfect metric or approach to effectively evaluate a software tool's impact, as this depends on aspects unique to each tool, how it is used, and how one wishes to evaluate engagement. We propose more broadly applicable guidelines (such as infrastructure that supports the usage of software and the collection of metrics about usage), as well as strategies for various types of software and resources. We also highlight outstanding issues in the field regarding how communities measure or evaluate software impact. To gain a deeper understanding of the issues hindering software evaluations, as well as to determine what appears to be helpful, we performed a survey of participants involved with scientific software projects for the Informatics Technology for Cancer Research (ITCR) program funded by the National Cancer Institute (NCI). We also investigated software among this scientific community and others to assess how often infrastructure that supports such evaluations is implemented and how this impacts rates of papers describing usage of the software. We find that although developers recognize the utility of analyzing data related to the impact or usage of their software, they struggle to find the time or funding to support such analyses. We also find that infrastructure such as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers seem to be associated with increased usage rates. Our findings can help scientific software developers make the most out of the evaluations of their software so that they can more fully benefit from such assessments.

5.
Nat Commun ; 11(1): 3400, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636365

RESUMEN

The Pan-Cancer Analysis of Whole Genomes (PCAWG) project generated a vast amount of whole-genome cancer sequencing resource data. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we provide a user's guide to the five publicly available online data exploration and visualization tools introduced in the PCAWG marker paper. These tools are ICGC Data Portal, UCSC Xena, Chromothripsis Explorer, Expression Atlas, and PCAWG-Scout. We detail use cases and analyses for each tool, show how they incorporate outside resources from the larger genomics ecosystem, and demonstrate how the tools can be used together to understand the biology of cancers more deeply. Together, the tools enable researchers to query the complex genomic PCAWG data dynamically and integrate external information, enabling and enhancing interpretation.


Asunto(s)
Biología Computacional/métodos , Genoma Humano , Neoplasias/genética , Cromotripsis , Análisis de Datos , Bases de Datos Genéticas , Genómica , Humanos , Internet , Mutación , Programas Informáticos , Interfaz Usuario-Computador , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA