Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Gene Med ; 8(2): 155-62, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16285001

RESUMEN

BACKGROUND: Viruses are being exploited as vectors to deliver therapeutic genetic information into target cells. The success of this approach will depend on the ability to overcome current limitations, especially in terms of safety and efficiency, through molecular engineering of the viral particles. METHODS: Here we show that in vitro directed evolution can be successfully performed to randomize the viral capsid by error prone PCR and to obtain mutants with improved phenotype. RESULTS: To demonstrate the potential of this technology we selected several adeno-associated virus (AAV) capsid variants that are less efficiently neutralized by human antibodies. These mutations can be used to generate novel vectors for the treatment of patients with pre-existing immunity to AAV. CONCLUSIONS: Our results demonstrate that combinatorial engineering overcomes the limitations of rational design approaches posed by incomplete understanding of the infectious process and at the same time offers a powerful tool to dissect basic viral biology by reverse genetics.


Asunto(s)
Dependovirus/genética , Evolución Molecular Dirigida , Vectores Genéticos , Secuencia de Aminoácidos , Dependovirus/inmunología , Terapia Genética , Vectores Genéticos/inmunología , Células HeLa , Humanos , Tolerancia Inmunológica , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa
2.
J Virol ; 80(14): 7265-9, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16809332

RESUMEN

Adeno-associated virus type 2 (AAV-2) targeting vectors have been generated by insertion of ligand peptides into the viral capsid at amino acid position 587. This procedure ablates binding of heparan sulfate proteoglycan (HSPG), AAV-2's primary receptor, in some but not all mutants. Using an AAV-2 display library, we investigated molecular mechanisms responsible for this phenotype, demonstrating that peptides containing a net negative charge are prone to confer an HSPG nonbinding phenotype. Interestingly, in vivo studies correlated the inability to bind to HSPG with liver and spleen detargeting in mice after systemic application, suggesting several strategies to improve efficiency of AAV-2 retargeting to alternative tissues.


Asunto(s)
Dependovirus/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Modelos Moleculares , Mutación , Receptores Virales/metabolismo , Sustitución de Aminoácidos , Animales , Dependovirus/genética , Marcación de Gen , Vectores Genéticos/genética , Hígado/metabolismo , Hígado/virología , Ratones , Especificidad de Órganos/genética , Biblioteca de Péptidos , Unión Proteica/genética , Estructura Terciaria de Proteína , Receptores Virales/genética , Bazo/metabolismo , Bazo/virología , Transducción Genética
3.
J Virol ; 79(18): 11776-87, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16140755

RESUMEN

To allow the direct visualization of viral trafficking, we genetically incorporated enhanced green fluorescent protein (GFP) into the adeno-associated virus (AAV) capsid by replacement of wild-type VP2 by GFP-VP2 fusion proteins. High-titer virus progeny was obtained and used to elucidate the process of nuclear entry. In the absence of adenovirus 5 (Ad5), nuclear translocation of AAV capsids was a slow and inefficient process: at 2 h and 4 h postinfection (p.i.), GFP-VP2-AAV particles were found in the perinuclear area and in nuclear invaginations but not within the nucleus. In Ad5-coinfected cells, isolated GFP-VP2-AAV particles were already detectable in the nucleus at 2 h p.i., suggesting that Ad5 enhanced the nuclear translocation of AAV capsids. The number of cells displaying viral capsids within the nucleus increased slightly over time, independently of helper virus levels, but the majority of the AAV capsids remained in the perinuclear area under all conditions analyzed. In contrast, independently of helper virus and with 10 times less virions per cell already observed at 2 h p.i., viral genomes were visible within the nucleus. Under these conditions and even with prolonged incubation times (up to 11 h p.i.), no intact viral capsids were detectable within the nucleus. In summary, the results show that GFP-tagged AAV particles can be used to study the cellular trafficking and nuclear entry of AAV. Moreover, our findings argue against an efficient nuclear entry mechanism of intact AAV capsids and favor the occurrence of viral uncoating before or during nuclear entry.


Asunto(s)
Dependovirus/genética , Dependovirus/fisiología , Proteínas Fluorescentes Verdes/genética , Transporte Activo de Núcleo Celular , Secuencia de Bases , Transporte Biológico Activo , Cápside/fisiología , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Núcleo Celular/virología , Citosol/virología , ADN Viral/genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA