Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Virol ; 96(1): e0150521, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34613791

RESUMEN

During evolution, viruses had to adapt to an increasingly complex environment of eukaryotic cells. Viral proteins that need to enter the cell nucleus or associate with nucleoli possess nuclear localization signals (NLSs) and nucleolar localization signals (NoLSs) for nuclear and nucleolar accumulation, respectively. As viral proteins are relatively small, acquisition of novel sequences seems to be a more complicated task for viruses than for eukaryotes. Here, we carried out a comprehensive analysis of the basic domain (BD) of HIV-1 Tat to show how viral proteins might evolve with NLSs and NoLSs without an increase in protein size. The HIV-1 Tat BD is involved in several functions, the most important being the transactivation of viral transcription. The BD also functions as an NLS, although it is substantially longer than a typical NLS. It seems that different regions in the BD could function as NLSs due to its enrichment with positively charged amino acids. Additionally, the high positive net charge inevitably causes the BD to function as an NoLS through a charge-specific mechanism. The integration of NLSs and NoLSs into functional domains enriched with positively charged amino acids might be a mechanism that allows the condensation of different functional sequences in small protein regions and, as a result, reduces protein size, influencing the origin and evolution of NLSs and NoLSs in viruses. IMPORTANCE Here, we investigated the molecular mechanism of nuclear localization signal (NLS) and nucleolar localization signal (NoLS) integration into the basic domain of HIV-1 Tat (49RKKRRQRRR57) and found that these two supplementary functions (i.e., function of NLS and function of NoLS) are embedded in the basic domain amino acid sequence. The integration of NLSs and NoLSs into functional domains of viral proteins enriched with positively charged amino acids is a mechanism that allows the concentration of different functions within small protein regions. Integration of NLS and NoLS into functional protein domains might have influenced the viral evolution, as this could prevent an increase in the protein size.


Asunto(s)
Regulación Viral de la Expresión Génica , Infecciones por VIH/virología , VIH-1/fisiología , Señales de Localización Nuclear , Dominios y Motivos de Interacción de Proteínas , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Secuencia de Consenso , Evolución Molecular , Interacciones Huésped-Patógeno , Modelos Moleculares , Unión Proteica , Transporte de Proteínas , Relación Estructura-Actividad , Proteínas Virales/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
2.
J Chem Inf Model ; 63(2): 546-560, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36633836

RESUMEN

Hybrid quantum mechanical/molecular mechanical (QM/MM) simulations fuel discoveries in many fields of science including computational biochemistry and enzymology. Development of more convenient tools leads to an increase in the number of works in which mechanical insights into enzymes' mode of operation are obtained. Most commonly, these tools feature hydrogen-capping (link atom) approach to provide coupling between QM and MM subsystems across a covalent bond. Extensive studies were conducted to provide a solid foundation for the correctness of such an approach when a bond to a nonpolar MM atom is considered. However, not every task may be accomplished this way. Certain scenarios of using QM/MM in computational enzymology encourage or even necessitate the incorporation of backbone atoms into the QM region. Two out of three backbone atoms are polar, and in QM/MM with electrostatic embedding, a neighboring link atom will be hyperpolarized. Several schemes to mitigate this effect were previously proposed alongside a rigorous assessment of quantitative effects on model systems. However, it was not clear whether they may translate into qualitatively different results and how link atom hyperpolarization may manifest itself in a real-life enzymological scenario. Here, we show that the consequences of such an artifact may be severe and may completely overturn the conclusions drawn from the simulations. Our case advocates for the use of charge redistribution schemes whenever intra-backbone QM/MM boundaries are considered. Moreover, we addressed how different boundary types and charge redistribution schemes influence backbone dynamics. We showed that the results are heavily dependent on which boundary MM terms are retained, with charge alteration being of secondary importance. In the worst case, only three intra-backbone boundaries may be used with relative confidence in the adequacy of resulting simulations, irrespective of the hyperpolarization mitigation scheme. Thus, advances in the field are certainly needed to fuel new discoveries. As of now, we believe that issues raised in this work might encourage authors in the field to report what boundaries, boundary MM terms, and charge redistribution schemes they are using, so their results may be correctly interpreted.


Asunto(s)
Proteínas , Teoría Cuántica , Proteínas/química , Hidrógeno
3.
Phys Chem Chem Phys ; 25(8): 6352-6361, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36779321

RESUMEN

Classical molecular dynamics simulation is a powerful and established method of modern computational chemistry. Being able to obtain accurate information on molecular behavior is crucial to get valuable insights into structure-function relationships that translate into fundamental findings and practical applications. Active sites of enzymes are known to be particularly intricate, therefore, simpler non-polarizable force fields may provide an inaccurate description. In this work, we addressed this hypothesis in a case of a canonical serine triad protease trypsin in its complex with a substrate-mimicking inhibitor. We tested six modern and popular force fields to find that significantly diverging results may be obtained. Amber FB-15 and OPLS-AA/M turned out to model the active site incorrectly. Amber ff19sb and ff15ipq demonstrated mixed performance. The best performing force fields were CHARMM36m and Amber ff99sb-ildn, therefore, they are recommended for use with this and related systems. We speculate that a similar lack of cross-force field convergence may be characteristic of other enzymatic systems. Therefore, we advocate for careful consideration of different force fields in any study within the field of computational enzymology.


Asunto(s)
Ámbar , Serina Proteasas , Simulación de Dinámica Molecular
4.
Proc Natl Acad Sci U S A ; 117(37): 22841-22848, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859757

RESUMEN

Quantum mechanics/molecular mechanics (QM/MM) maturation of an immunoglobulin (Ig) powered by supercomputation delivers novel functionality to this catalytic template and facilitates artificial evolution of biocatalysts. We here employ density functional theory-based (DFT-b) tight binding and funnel metadynamics to advance our earlier QM/MM maturation of A17 Ig-paraoxonase (WTIgP) as a reactibody for organophosphorus toxins. It enables regulation of biocatalytic activity for tyrosine nucleophilic attack on phosphorus. The single amino acid substitution l-Leu47Lys results in 340-fold enhanced reactivity for paraoxon. The computed ground-state complex shows substrate-induced ionization of the nucleophilic l-Tyr37, now H-bonded to l-Lys47, resulting from repositioning of l-Lys47. Multiple antibody structural homologs, selected by phenylphosphonate covalent capture, show contrasting enantioselectivities for a P-chiral phenylphosphonate toxin. That is defined by crystallographic analysis of phenylphosphonylated reaction products for antibodies A5 and WTIgP. DFT-b analysis using QM regions based on these structures identifies transition states for the favored and disfavored reactions with surprising results. This stereoselection analysis is extended by funnel metadynamics to a range of WTIgP variants whose predicted stereoselectivity is endorsed by experimental analysis. The algorithms used here offer prospects for tailored design of highly evolved, genetically encoded organophosphorus scavengers and for broader functionalities of members of the Ig superfamily, including cell surface-exposed receptors.

5.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003521

RESUMEN

Over the past decades, the problem of bacterial resistance to most antibiotics has become a serious threat to patients' survival. Nevertheless, antibiotics of a novel class have not been approved since the 1980s. The development of antibiotic potentiators is an appealing alternative to the challenging process of searching for new antimicrobials. Production of H2S-one of the leading defense mechanisms crucial for bacterial survival-can be influenced by the inhibition of relevant enzymes: bacterial cystathionine γ-lyase (bCSE), bacterial cystathionine ß-synthase (bCBS), or 3-mercaptopyruvate sulfurtransferase (MST). The first one makes the main contribution to H2S generation. Herein, we present data on the synthesis, in silico analyses, and enzymatic and microbiological assays of novel bCSE inhibitors. Combined molecular docking and molecular dynamics analyses revealed a novel binding mode of these ligands to bCSE. Lead compound 2a manifested strong potentiating activity when applied in combination with some commonly used antibiotics against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. The compound was found to have favorable in vitro absorption, distribution, metabolism, excretion, and toxicity parameters. The high effectiveness and safety of compound 2a makes it a promising candidate for enhancing the activity of antibiotics against high-priority pathogens.


Asunto(s)
Sulfuro de Hidrógeno , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Sulfuro de Hidrógeno/metabolismo , Cistationina gamma-Liasa/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pirroles/farmacología , Simulación del Acoplamiento Molecular , Bacterias/metabolismo , Indoles/farmacología , Cistationina betasintasa/metabolismo
6.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35054984

RESUMEN

Hydrogenation of levulinic acid (LA) obtained from cellulose biomass is a promising path for production of γ-valerolactone (GVL)-a component of biofuel. In this work, we developed Ru nanoparticle containing nanocomposites based on hyperbranched pyridylphenylene polymer, serving as multiligand and stabilizing matrix. The functionalization of the nanocomposite with sulfuric acid significantly enhances the activity of the catalyst in the selective hydrogenation of LA to GVL and allows the reaction to proceed under mild reaction conditions (100 °C, 2 MPa of H2) in water and low catalyst loading (0.016 mol.%) with a quantitative yield of GVL and selectivity up to 100%. The catalysts were successfully reused four times without a significant loss of activity. A comprehensive physicochemical characterization of the catalysts allowed us to assess structure-property relationships and to uncover an important role of the polymeric support in the efficient GVL synthesis.


Asunto(s)
Lactonas/química , Ácidos Levulínicos/química , Polímeros/química , Rutenio/química , Catálisis , Celulosa/química , Hidrogenación , Estructura Molecular , Análisis Espectral , Temperatura
7.
Molecules ; 28(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36615487

RESUMEN

Central nervous system tumors related to gliomas are of neuroectodermal origin and cover about 30% of all primary brain tumors. Glioma is not susceptible to any therapy and surgical attack remains one of the main approaches to its treatment. Preoperative tumor imaging methods, such as positron emission tomography (PET), are currently used to distinguish malignant tissue to increase the accuracy of glioma removal. However, PET is lacking a specific visualization of cells possessing certain molecular markers. Here, we report an application of aptamers to enhancing specificity in imaging tumor cells bearing the epidermal growth factor receptor (EGFR). Glioblastoma is characterized by increased EGFR expression, as well as mutations of this receptor associated with active division, migration, and adhesion of tumor cells. Since 2021, EGFR has been included into the WHO classification of gliomas as a molecular genetic marker. To obtain conjugates of aptamers GR20 and GOL1-specific to EGFR, a 4-[18F]fluorobenzylazide radiotracer was used as a synthon. For the production of the synthon, a method of automatic synthesis on an Eckert & Ziegler research module was adapted and modified using spirocyclic iodonium ylide as a precursor. Conjugation of 4-[18F]fluorobenzylazide and alkyne-modified aptamers was carried out using Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with/without the TBTA ligand. As a result, it was possible to obtain 18F-labelled conjugates with 97% radiochemical purity for [18F]FB-GR20 and 98% for [18F]FB-GOL1. The obtained conjugates can be used for further studies in PET analysis on model animals with grafted glioblastoma.


Asunto(s)
Glioblastoma , Glioma , Animales , Radioisótopos de Flúor/química , Glioblastoma/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Receptores ErbB/metabolismo , Oligonucleótidos , Glioma/diagnóstico por imagen
8.
Biochemistry (Mosc) ; 86(8): 1012-1024, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34488577

RESUMEN

Conventional approaches for studying and molecular typing of tumors include PCR, blotting, omics, immunocytochemistry, and immunohistochemistry. The last two methods are the most used, as they enable detecting both tumor protein markers and their localizations within the cells. In this study, we have investigated a possibility of using RNA aptamers, in particular, 2'-F-pyrimidyl-RNA aptamer ME07 (48 nucleotides long), specific to the receptor of epidermal growth factor (EGFR, ErbB1, Her1), as an alternative to monoclonal antibodies for aptacytochemistry and aptahistochemistry for human glioblastoma multiforme (GBM). A specificity of binding of FAM-ME07 to the receptor on the tumor cells has been demonstrated by flow cytometry; an apparent dissociation constant for the complex of aptamer - EGFR on the cell has been determined; a number of EGFR molecules has been semi-quantitatively estimated for the tumor cell lines having different amount of EGFR: A431 (106 copies per cell), U87 (104 copies per cell), MCF7 (103 copies per cell), and ROZH, primary GBM cell culture derived from patient (104 copies per cell). According to fluorescence microscopy, FAM-ME07 interacts directly with the receptors on A431 cells, followed by its internalization into the cytoplasm and translocation to the nucleolus; this finding opens a possibility of ME07 application as an escort aptamer for a delivery of therapeutic agents into tumor cells. FAM-ME07 efficiently stains sections of GBM clinical specimens, which enables an identification of EGFR-positive clones within a heterogeneous tumor; and providing a potential for further studying animal models of GBM.


Asunto(s)
Aptámeros de Nucleótidos/química , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , ARN/química , Anticuerpos Monoclonales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Citoplasma/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB , Glioblastoma/genética , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Microscopía Fluorescente , Oligonucleótidos/química , Medicina de Precisión , Transporte de Proteínas
9.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830487

RESUMEN

Neuronal calcium sensor-1 (NCS-1) is a four-EF-hand ubiquitous signaling protein modulating neuronal function and survival, which participates in neurodegeneration and carcinogenesis. NCS-1 recognizes specific sites on cellular membranes and regulates numerous targets, including G-protein coupled receptors and their kinases (GRKs). Here, with the use of cellular models and various biophysical and computational techniques, we demonstrate that NCS-1 is a redox-sensitive protein, which responds to oxidizing conditions by the formation of disulfide dimer (dNCS-1), involving its single, highly conservative cysteine C38. The dimer content is unaffected by the elevation of intracellular calcium levels but increases to 10-30% at high free zinc concentrations (characteristic of oxidative stress), which is accompanied by accumulation of the protein in punctual clusters in the perinuclear area. The formation of dNCS-1 represents a specific Zn2+-promoted process, requiring proper folding of the protein and occurring at redox potential values approaching apoptotic levels. The dimer binds Ca2+ only in one EF-hand per monomer, thereby representing a unique state, with decreased α-helicity and thermal stability, increased surface hydrophobicity, and markedly improved inhibitory activity against GRK1 due to 20-fold higher affinity towards the enzyme. Furthermore, dNCS-1 can coordinate zinc and, according to molecular modeling, has an asymmetrical structure and increased conformational flexibility of the subunits, which may underlie their enhanced target-binding properties. In HEK293 cells, dNCS-1 can be reduced by the thioredoxin system, otherwise accumulating as protein aggregates, which are degraded by the proteasome. Interestingly, NCS-1 silencing diminishes the susceptibility of Y79 cancer cells to oxidative stress-induced apoptosis, suggesting that NCS-1 may mediate redox-regulated pathways governing cell death/survival in response to oxidative conditions.


Asunto(s)
Señalización del Calcio/genética , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Neoplasias/genética , Proteínas Sensoras del Calcio Neuronal/genética , Neuronas/metabolismo , Neuropéptidos/genética , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Dimerización , Disulfuros/química , Motivos EF Hand/genética , Células HEK293 , Humanos , Cinética , Neoplasias/patología , Proteínas Sensoras del Calcio Neuronal/antagonistas & inhibidores , Neuronas/química , Neuropéptidos/antagonistas & inhibidores , Oxidación-Reducción , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Zinc/metabolismo
10.
Molecules ; 26(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34641383

RESUMEN

Organophosphate hydrolases are promising as potential biotherapeutic agents to treat poisoning with pesticides or nerve gases. However, these enzymes often need to be further engineered in order to become useful in practice. One example of such enhancement is the alteration of enantioselectivity of diisopropyl fluorophosphatase (DFPase). Molecular modeling techniques offer a unique opportunity to address this task rationally by providing a physical description of the substrate-binding process. However, DFPase is a metalloenzyme, and correct modeling of metal cations is a challenging task generally coming with a tradeoff between simulation speed and accuracy. Here, we probe several molecular mechanical parameter combinations for their ability to empower long simulations needed to achieve a quantitative description of substrate binding. We demonstrate that a combination of the Amber19sb force field with the recently developed 12-6 Ca2+ models allows us to both correctly model DFPase and obtain new insights into the DFP binding process.


Asunto(s)
Calcio/química , Calcio/metabolismo , Simulación de Dinámica Molecular , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Dominio Catalítico , Modelos Moleculares , Conformación Proteica
11.
Nucleic Acids Res ; 46(3): 1102-1112, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29267876

RESUMEN

Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version.


Asunto(s)
ADN/química , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Simulación de Dinámica Molecular , Emparejamiento Base , Secuencia de Bases , Microscopía por Crioelectrón , ADN/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/química , Humanos , Microscopía de Fuerza Atómica , Conformación de Ácido Nucleico
12.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260324

RESUMEN

Transactive response DNA and RNA binding protein 43 kDa (TDP-43) is a highly conserved heterogeneous nuclear ribonucleoprotein (hnRNP), which is involved in several steps of protein production including transcription and splicing. Its aggregates are frequently observed in motor neurons from amyotrophic lateral sclerosis patients and in the most common variant of frontotemporal lobar degeneration. Recently it was shown that TDP-43 is able to bind Zn2+ by its RRM domain. In this work, we have investigated Zn2+ binding to a short peptide 256-264 from C-terminus of RRM2 domain using isothermal titration calorimetry, electrospray ionization mass spectrometry, QM/MM simulations, and NMR spectroscopy. We have found that this peptide is able to bind zinc ions with a Ka equal to 1.6 × 105 M-1. Our findings suggest the existence of a zinc binding site in the C-terminal region of RRM2 domain. Together with the existing structure of the RRM2 domain of TDP-43 we propose a model of its complex with Zn2+ which illustrates how zinc might regulate DNA/RNA binding.


Asunto(s)
Proteínas de Unión al ADN/química , Péptidos/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Simulación por Computador , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptidos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos
13.
Photosynth Res ; 142(2): 229-240, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31302832

RESUMEN

Mitochondria-targeted antioxidants (also known as 'Skulachev Ions' electrophoretically accumulated by mitochondria) exert anti-ageing and ROS-protecting effects well documented in animal and human cells. However, their effects on chloroplast in photosynthetic cells and corresponding mechanisms are scarcely known. For the first time, we describe a dramatic quenching effect of (10-(6-plastoquinonyl)decyl triphenylphosphonium (SkQ1) on chlorophyll fluorescence, apparently mediated by redox interaction of SkQ1 with Mn cluster in Photosystem II (PSII) of chlorophyte microalga Chlorella vulgaris and disabling the oxygen-evolving complex (OEC). Microalgal cells displayed a vigorous uptake of SkQ1 which internal concentration built up to a very high level. Using optical and EPR spectroscopy, as well as electron donors and in silico molecular simulation techniques, we found that SkQ1 molecule can interact with Mn atoms of the OEC in PSII. This stops water splitting giving rise to potent quencher(s), e.g. oxidized reaction centre of PSII. Other components of the photosynthetic apparatus proved to be mostly intact. This effect of the Skulachev ions might help to develop in vivo models of photosynthetic cells with impaired OEC function but essentially intact otherwise. The observed phenomenon suggests that SkQ1 can be applied to study stress-induced damages to OEC in photosynthetic organisms.


Asunto(s)
Antioxidantes/metabolismo , Manganeso/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Cationes , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Fluorescencia , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Luz , Simulación del Acoplamiento Molecular , Oxígeno/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacología
14.
Molecules ; 24(2)2019 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-30642123

RESUMEN

Peptides are promising drug candidates due to high specificity and standout safety. Identification of bioactive peptides de novo using molecular docking is a widely used approach. However, current scoring functions are poorly optimized for peptide ligands. In this work, we present a novel algorithm PeptoGrid that rescores poses predicted by AutoDock Vina according to frequency information of ligand atoms with particular properties appearing at different positions in the target protein's ligand binding site. We explored the relevance of PeptoGrid ranking with a virtual screening of peptide libraries using angiotensin-converting enzyme and GABAB receptor as targets. A reasonable agreement between the computational and experimental data suggests that PeptoGrid is suitable for discovering functional leads.


Asunto(s)
Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Biblioteca de Péptidos , Péptidos/química , Péptidos/farmacología , Algoritmos , Animales , Simulación por Computador , Simulación de Dinámica Molecular , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Pez Cebra
15.
Int J Mol Sci ; 19(12)2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30544979

RESUMEN

Plants, including Triticum aestivum L., are constantly attacked by various pathogens which induce immune responses. Immune processes in plants are tightly regulated by proteases from different families within their degradome. In this study, a wheat degradome was characterized. Using profile hidden Markov model (HMMer) algorithm and Pfam database, comprehensive analysis of the T. aestivum genome revealed a large number of proteases (1544 in total) belonging to the five major protease families: serine, cysteine, threonine, aspartic, and metallo-proteases. Mass-spectrometry analysis revealed a 30% difference between degradomes of distinct wheat cultivars (Khakasskaya and Darya), and infection by biotrophic (Puccinia recondita Rob. ex Desm f. sp. tritici) or necrotrophic (Stagonospora nodorum) pathogens induced drastic changes in the presence of proteolytic enzymes. This study shows that an early immune response to biotic stress is associated with the same core of proteases from the C1, C48, C65, M24, M41, S10, S9, S8, and A1 families. Further liquid chromatography-mass spectrometry (LC-MS) analysis of the detected protease-derived peptides revealed that infection by both pathogens enhances overall proteolytic activity in wheat cells and leads to activation of proteolytic cascades. Moreover, sites of proteolysis were identified within the proteases, which probably represent targets of autocatalytic activation, or hydrolysis by another protease within the proteolytic cascades. Although predicted substrates of metacaspase-like and caspase-like proteases were similar in biotrophic and necrotrophic infections, proteolytic activation of proteases was not found to be associated with metacaspase-like and caspase-like activities. These findings indicate that the response of T. aestivum to biotic stress is regulated by unique mechanisms.


Asunto(s)
Caspasas/metabolismo , Péptido Hidrolasas/metabolismo , Enfermedades de las Plantas/microbiología , Proteómica/métodos , Ascomicetos/patogenicidad , Basidiomycota/patogenicidad , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Subtilisinas/genética , Subtilisinas/metabolismo
16.
Biophys J ; 112(11): 2327-2335, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591605

RESUMEN

Measurements of ion conductance through α-hemolysin pore in a bilayer lipid membrane revealed blocking of the ion channel by a series of rhodamine 19 and rhodamine B esters. The longest dwell closed time of the blocking was observed with rhodamine 19 butyl ester (C4R1), whereas the octyl ester (C8R1) was of poor effect. Voltage asymmetry in the binding kinetics indicated that rhodamine derivatives bound to the stem part of the aqueous pore lumen. The binding frequency was proportional to a quadratic function of rhodamine concentrations, thereby showing that the dominant binding species were rhodamine dimers. Two levels of the pore conductance and two dwell closed times of the pore were found. The dwell closed times lengthened as the voltage increased, suggesting impermeability of the channel for the ligands. Molecular docking analysis revealed two distinct binding sites within the lumen of the stem of the α-hemolysin pore for the C4R1 dimer, but only one binding site for the C8R1 dimer. The blocking of the α-hemolysin nanopore by rhodamines could be utilized in DNA sequencing as additional optical sensing owing to bright fluorescence of rhodamines if used for DNA labeling.


Asunto(s)
Toxinas Bacterianas/agonistas , Toxinas Bacterianas/química , Proteínas Hemolisinas/agonistas , Proteínas Hemolisinas/química , Rodaminas/química , Escherichia coli , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Membrana Dobles de Lípidos/química , Potenciales de la Membrana , Simulación del Acoplamiento Molecular , Multimerización de Proteína , Staphylococcus aureus
17.
J Org Chem ; 82(19): 10015-10024, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28856889

RESUMEN

Oligonucleotide probes labeled with pyrene pairs that form excimers have a number of applications in hybridization analysis of nucleic acids. A long excited state lifetime, large Stokes shift, and chemical stability make pyrene excimer an attractive fluorescent label. Here we report synthesis of chiral phosphoramidite building blocks based on (R)-4-amino-2,2-dimethylbutane-1,3-diol, easily available from an inexpensive d-(-)-pantolactone. 1-Pyreneacetamide, 1-pyrenecarboxamide, and DABCYL derivatives have been used in preparation of molecular beacon (MB) probes labeled with one or two pyrenes/quenchers. We observed significant difference in the excimer emission maxima (475-510 nm; Stokes shifts 125-160 nm or 7520-8960 cm-1) and excimer/monomer ratio (from 0.5 to 5.9) in fluorescence spectra depending on the structure and position of monomers in the pyrene pair. The pyrene excimer formed by two rigid 1-pyrenecarboxamide residues showed the brightest emission. This is consistent with molecular dynamics data on excimer stability. Increase of the excimer fluorescence for MBs after hybridization with DNA was up to 24-fold.

18.
Bioorg Med Chem ; 25(14): 3597-3605, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28396019

RESUMEN

Nowadays modified oligonucleotides are widely used in diagnostics and as novel therapeutics. Introduction of modified or unnatural residues into oligonucleotides allows fine tuning of their binding properties to complementary nucleic acids and leads to improved stability both in vitro and in vivo. Previously it was demonstrated that insertion of phenoxazine nucleotides with various groups in C9-position into oligonucleotides leads to a significant increase of duplex stability with complementary DNA and RNA. Here the synthesis of a novel G-clamp nucleoside analogue (G8AE-clamp) bearing 2-aminoethyl tether at C8-atom is presented. Introduction of such modified residues into oligonucleotides lead to enhanced specificity of duplex formation towards complementary DNA and RNA targets with increased thermal and 3'-exonuclease stability. According to CD-spectroscopy studies G8AE-clamp does not substantially disrupt helix geometry. Primers containing G8AE-clamp demonstrated superior sensitivity in qPCR detection of dsRNA of Kemerovo virus in comparison to native oligonucleotides.


Asunto(s)
Guanosina/análogos & derivados , Oligonucleótidos/síntesis química , Orbivirus/genética , Oxazinas/química , ARN Viral/metabolismo , Dicroismo Circular , Exonucleasas/metabolismo , Guanosina/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Oligonucleótidos/química , ARN Bicatenario/análisis , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 708-19, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24598740

RESUMEN

The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.95 Šresolution. It was found that compared with A17κ the active centre of A17λ is displaced, stabilized and made more rigid owing to interdomain interactions involving the CDR loops from the VL and VH domains. These VL/VH domains also have lower mobility, as deduced from the atomic displacement parameters of the crystal structure. The antibody elbow angle is decreased to 126° compared with 138° in A17κ. These structural differences account for the subtle changes in catalytic efficiency and thermodynamic parameters determined with two organophosphate ligands, as well as in the affinity for peptide substrates selected from a combinatorial cyclic peptide library, between the A17κ and A17λ variants. The data presented will be of interest and relevance to researchers dealing with the design of antibodies with tailor-made functions.


Asunto(s)
Regiones Constantes de Inmunoglobulina/química , Región de Cambio de la Inmunoglobulina , Cadenas kappa de Inmunoglobulina/química , Cadenas lambda de Inmunoglobulina/química , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Cristalización , Cristalografía por Rayos X , Humanos , Regiones Constantes de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/genética , Proteínas Recombinantes/química , Termodinámica
20.
Protein Sci ; 33(8): e5100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39022909

RESUMEN

Cholinesterases are well-known and widely studied enzymes crucial to human health and involved in neurology, Alzheimer's, and lipid metabolism. The protonation pattern of active sites of cholinesterases influences all the chemical processes within, including reaction, covalent inhibition by nerve agents, and reactivation. Despite its significance, our comprehension of the fine structure of cholinesterases remains limited. In this study, we employed enhanced-sampling quantum-mechanical/molecular-mechanical calculations to show that cholinesterases predominantly operate as dynamic mixtures of two protonation states. The proton transfer between two non-catalytic glutamate residues follows the Grotthuss mechanism facilitated by a mediator water molecule. We show that this uncovered complexity of active sites presents a challenge for classical molecular dynamics simulations and calls for special treatment. The calculated proton transfer barrier of 1.65 kcal/mol initiates a discussion on the potential existence of two coupled low-barrier hydrogen bonds in the inhibited form of butyrylcholinesterase. These findings expand our understanding of structural features expressed by highly evolved enzymes and guide future advances in cholinesterase-related protein and drug design studies.


Asunto(s)
Butirilcolinesterasa , Dominio Catalítico , Simulación de Dinámica Molecular , Protones , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Humanos , Enlace de Hidrógeno , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Colinesterasas/química , Colinesterasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA