Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Microbiol ; 23(10): 5704-5715, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34288318

RESUMEN

Bacteria interact with fungi in a variety of ways to inhibit fungal growth, while the underlying mechanisms remain only partially characterized. The plant-beneficial Bacillus and Pseudomonas species are well-known antifungal biocontrol agents, whereas Lysobacter are far less studied. Members of Lysobacter are easy to grow in fermenters and are safe to humans, animals and plants. These environmentally ubiquitous bacteria use a diverse arsenal of weapons to prey on other microorganisms, including fungi and oomycetes. The small molecular toxins secreted by Lysobacter represent long-range weapons effective against filamentous fungi. The secreted hydrolytic enzymes act as intermediate-range weapons against non-filamentous fungi. The contact-dependent killing devices are proposed to work as short-range weapons. We describe here the structure, biosynthetic pathway, action mode and applications of one of the best-characterized long-range weapons, the heat-stable antifungal factor (HSAF) produced by Lysobacter enzymogenes. We discuss how the flagellar type III secretion system has evolved into an enzyme secretion machine for the intermediate-range antifungal weapons. We highlight an intricate mechanism coordinating the production of the long-range weapon, HSAF and the proposed contact-dependent killing device, type VI secretion system. We also overview the regulatory mechanisms of HSAF production involving specific transcription factors and the bacterial second messenger c-di-GMP.


Asunto(s)
Lysobacter , Antifúngicos/metabolismo , Antifúngicos/farmacología , Proteínas Bacterianas/metabolismo , Hongos/metabolismo , Lysobacter/genética , Lysobacter/metabolismo , Factores de Transcripción/metabolismo
2.
Nat Chem Biol ; 15(9): 925-931, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406376

RESUMEN

Multicellular organisms achieve greater complexity through cell divisions that generate different cell types. We engineered a simple genetic circuit that induces asymmetric cell division and subsequent cell differentiation in Escherichia coli. The circuit involves a scaffolding protein, PopZ, that is stably maintained at a single cell pole over multiple asymmetric cell divisions. PopZ was functionalized to degrade the signaling molecule, c-di-GMP. By regulating synthesis of functionalized PopZ via small molecules or light, we can chemically or optogenetically control the relative abundance of two distinct cell types, characterized by either low or high c-di-GMP levels. Differences in c-di-GMP levels can be transformed into genetically programmable differences in protein complex assembly or gene expression, which in turn produce differential behavior or biosynthetic activities. This study shows emergence of complex biological phenomena from a simple genetic circuit and adds programmable bacterial cell differentiation to the genetic toolbox of synthetic biology and biotechnology.


Asunto(s)
División Celular Asimétrica/fisiología , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Movimiento Celular , Clonación Molecular , ADN Bacteriano , Regulación Bacteriana de la Expresión Génica , Transducción de Señal
3.
J Bacteriol ; 202(2)2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31659012

RESUMEN

Gene transfer agents (GTAs) are bacteriophage-like particles produced by several bacterial and archaeal lineages that contain small pieces of the producing cells' genomes that can be transferred to other cells in a process similar to transduction. One well-studied GTA is RcGTA, produced by the alphaproteobacterium Rhodobacter capsulatus RcGTA gene expression is regulated by several cellular regulatory systems, including the CckA-ChpT-CtrA phosphorelay. The transcription of multiple other regulator-encoding genes is affected by the response regulator CtrA, including genes encoding putative enzymes involved in the synthesis and hydrolysis of the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP). To investigate whether c-di-GMP signaling plays a role in RcGTA production, we disrupted the CtrA-affected genes potentially involved in this process. We found that disruption of four of these genes affected RcGTA gene expression and production. We performed site-directed mutagenesis of key catalytic residues in the GGDEF and EAL domains responsible for diguanylate cyclase (DGC) and c-di-GMP phosphodiesterase (PDE) activities and analyzed the functions of the wild-type and mutant proteins. We also measured RcGTA production in R. capsulatus strains where intracellular levels of c-di-GMP were altered by the expression of either a heterologous DGC or a heterologous PDE. This adds c-di-GMP signaling to the collection of cellular regulatory systems controlling gene transfer in this bacterium. Furthermore, the heterologous gene expression and the four gene disruptions had similar effects on R. capsulatus flagellar motility as found for gene transfer, and we conclude that c-di-GMP inhibits both RcGTA production and flagellar motility in R. capsulatusIMPORTANCE Gene transfer agents (GTAs) are virus-like particles that move cellular DNA between cells. In the alphaproteobacterium Rhodobacter capsulatus, GTA production is affected by the activities of multiple cellular regulatory systems, to which we have now added signaling via the second messenger dinucleotide molecule bis-(3'-5')-cyclic dimeric GMP (c-di-GMP). Similar to the CtrA phosphorelay, c-di-GMP also affects R. capsulatus flagellar motility in addition to GTA production, with lower levels of intracellular c-di-GMP favoring increased flagellar motility and gene transfer. These findings further illustrate the interconnection of GTA production with global systems of regulation in R. capsulatus, providing additional support for the notion that the production of GTAs has been maintained in this and related bacteria because it provides a benefit to the producing organisms.


Asunto(s)
GMP Cíclico/análogos & derivados , Rhodobacter capsulatus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Transferencia de Gen Horizontal/efectos de los fármacos , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Rhodobacter capsulatus/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
4.
Nucleic Acids Res ; 46(18): 9276-9288, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30202891

RESUMEN

Enzymes controlling intracellular second messengers in bacteria, such as c-di-GMP, often affect some but not other targets. How such specificity is achieved is understood only partially. Here, we present a novel mechanism that enables specific c-di-GMP-dependent inhibition of the antifungal antibiotic production. Expression of the biosynthesis operon for Heat-Stable Antifungal Factor, HSAF, in Lysobacter enzymogenes occurs when the transcription activator Clp binds to two upstream sites. At high c-di-GMP levels, Clp binding to the lower-affinity site is compromised, which is sufficient to decrease gene expression. We identified a weak c-di-GMP phosphodiesterase, LchP, that plays a disproportionately high role in HSAF synthesis due to its ability to bind Clp. Further, Clp binding stimulates phosphodiesterase activity of LchP. An observation of a signaling complex formed by a c-di-GMP phosphodiesterase and a c-di-GMP-binding transcription factor lends support to the emerging paradigm that such signaling complexes are common in bacteria, and that bacteria and eukaryotes employ similar solutions to the specificity problem in second messenger-based signaling systems.


Asunto(s)
Antibacterianos/biosíntesis , GMP Cíclico/análogos & derivados , Lysobacter/metabolismo , Transducción de Señal , Antifúngicos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Lysobacter/genética , Modelos Genéticos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas/genética
5.
J Bacteriol ; 200(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29229701

RESUMEN

Elevated levels of the second messenger c-di-GMP suppress virulence in diverse pathogenic bacteria, yet mechanisms are poorly characterized. In the foodborne pathogen Listeria monocytogenes, high c-di-GMP levels inhibit mammalian cell invasion. Here, we show that invasion is impaired because of the decreased expression levels of internalin genes whose products are involved in invasion. We further show that at high c-di-GMP levels, the expression of the entire virulence regulon is suppressed, and so is the expression of the prfA gene encoding the master activator of the virulence regulon. Analysis of mechanisms controlling prfA expression pointed to the transcription factor CodY as a c-di-GMP-sensitive component. In high-c-di-GMP strains, codY gene expression is decreased, apparently due to the lower activity of CodY, which functions as an activator of codY transcription. We found that listerial CodY does not bind c-di-GMP in vitro and therefore investigated whether c-di-GMP levels affect two known cofactors of listerial CodY, branched-chain amino acids and GTP. Our manipulation of branched-chain amino acid levels did not perturb the c-di-GMP effect; however, our replacement of listerial CodY with the streptococcal CodY homolog, whose activity is GTP independent, abolished the c-di-GMP effect. The results of this study suggest that elevated c-di-GMP levels decrease the activity of the coordinator of metabolism and virulence, CodY, possibly via lower GTP levels, and that decreased CodY activity suppresses L. monocytogenes virulence by the decreased expression of the PrfA virulence regulon.IMPORTANCEListeria monocytogenes is a pathogen causing listeriosis, a disease responsible for the highest mortality rate among foodborne diseases. Understanding how the virulence of this pathogen is regulated is important for developing treatments to decrease the frequency of listerial infections in susceptible populations. In this study, we describe the mechanism through which elevated levels of the second messenger c-di-GMP inhibit listerial invasion in mammalian cells. Inhibition is caused by the decreased activity of the transcription factor CodY that coordinates metabolism and virulence.


Asunto(s)
GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidad , Factores de Transcripción/genética , Aminoácidos de Cadena Ramificada/genética , Aminoácidos de Cadena Ramificada/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , GMP Cíclico/análisis , GMP Cíclico/genética , GMP Cíclico/metabolismo , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Células HT29 , Interacciones Huésped-Patógeno/genética , Humanos , Listeriosis/microbiología , Factores de Terminación de Péptidos/genética , Regiones Promotoras Genéticas , Regulón , Virulencia/genética
6.
J Bacteriol ; 200(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30181123

RESUMEN

Borrelia burgdorferi, the causative agent of Lyme disease, encounters two disparate host environments during its enzootic life cycle, Ixodes ticks and mammalian hosts. B. burgdorferi has a small genome that encodes a streamlined cyclic dimeric GMP (c-di-GMP) signaling system comprising a single diguanylate cyclase, Rrp1, and two phosphodiesterases. This system is essential for spirochete survival in ticks, in part because it controls the expression of the glp operon involved in glycerol utilization. In this study, we showed that a B. burgdorferi c-di-GMP receptor, PlzA, functions as both a positive and a negative regulator for glp expression. Deletion of plzA or mutation in plzA that impaired c-di-GMP binding abolished glp expression. On the other hand, overexpression of plzA resulted in glp repression, which could be rescued by simultaneous overexpression of rrp1. plzA overexpression in the rrp1 mutant, which is devoid of c-di-GMP, or overexpression of a plzA mutant incapable of c-di-GMP binding further enhanced glp repression. Combined results suggest that c-di-GMP-bound PlzA functions as a positive regulator, whereas ligand-free PlzA acts as a negative regulator for glp expression. Thus, PlzA of B. burgdorferi with a streamlined c-di-GMP signaling system not only controls multiple targets, as previously envisioned, but has also evolved different modes of action.IMPORTANCE The Lyme disease pathogen, Borrelia burgdorferi, has a simple cyclic dimeric GMP (c-di-GMP) signaling system essential for adaptation of the pathogen to the complicated tick environment. The c-di-GMP effector of B. burgdorferi, PlzA, has been shown to regulate multiple cellular processes, including motility, osmolality sensing, and nutrient utilization. The findings of this study demonstrate that PlzA not only controls multiple targets but also has different functional modalities, allowing it to act as both positive and negative regulator of the glp operon expression. This work highlights how bacteria with a small genome can compensate for the limited regulatory repertoire by increasing the complexity of targets and modes of action in their regulatory proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Proteínas Portadoras/metabolismo , Glicerol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Proteínas Portadoras/genética , Regulación Bacteriana de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Operón , Unión Proteica , Transducción de Señal
7.
J Bacteriol ; 199(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28264994

RESUMEN

Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger cyclic di-GMP (c-di-GMP) as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense, c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared-light-regulated diguanylate cyclase and a blue-light-regulated c-di-GMP phosphodiesterase. It allows the generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the time scale of chemotaxis signaling. We provide experimental evidence that binding of c-di-GMP to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense change with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state.IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and modulates their contribution to the overall chemotaxis response. Here, we used an optogenetic system to perturb intracellular concentrations of the bacterial second messenger c-di-GMP to show that in some chemotaxis receptors, c-di-GMP functions in a similar feedback loop to connect the metabolic status of the cells to the sensory activity of chemotaxis receptors.


Asunto(s)
Azospirillum brasilense/fisiología , Quimiotaxis , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Locomoción , Carbono/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Luz , Optogenética/métodos , Oxígeno/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Transducción de Señal
8.
J Bacteriol ; 199(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28320886

RESUMEN

Many aspects of bacterial physiology and behavior, including motility, surface attachment, and the cell cycle, are controlled by cyclic di-GMP (c-di-GMP)-dependent signaling pathways on the scale of seconds to minutes. Interrogation of such processes in real time requires tools for introducing rapid and reversible changes in intracellular c-di-GMP levels. Inducing the expression of genes encoding c-di-GMP-synthetic (diguanylate cyclases) and -degrading (c-di-GMP phosphodiesterase) enzymes by chemicals may not provide adequate temporal control. In contrast, light-controlled diguanylate cyclases and phosphodiesterases can be quickly activated and inactivated. A red/near-infrared-light-regulated diguanylate cyclase, BphS, was engineered previously, yet a complementary light-activated c-di-GMP phosphodiesterase has been lacking. In search of such a phosphodiesterase, we investigated two homologous proteins from Allochromatium vinosum and Magnetococcus marinus, designated BldP, which contain C-terminal EAL-BLUF modules, where EAL is a c-di-GMP phosphodiesterase domain and BLUF is a blue light sensory domain. Characterization of the BldP proteins in Escherichia coli and in vitro showed that they possess light-activated c-di-GMP phosphodiesterase activities. Interestingly, light activation in both enzymes was dependent on oxygen levels. The truncated EAL-BLUF fragment from A. vinosum BldP lacked phosphodiesterase activity, whereas a similar fragment from M. marinus BldP, designated EB1, possessed such activity that was highly (>30-fold) upregulated by light. Following light withdrawal, EB1 reverted to the inactive ground state with a half-life of ∼6 min. Therefore, the blue-light-activated phosphodiesterase EB1 can be used in combination with the red/near-infrared-light-regulated diguanylate cyclase BphS for the bidirectional regulation of c-di-GMP-dependent processes in E. coli as well as other bacterial and nonbacterial cells.IMPORTANCE Regulation of motility, attachment to surfaces, the cell cycle, and other bacterial processes controlled by the c-di-GMP signaling pathways occur at a fast (seconds-to-minutes) pace. Interrogation of these processes at high temporal and spatial resolution using chemicals is difficult or impossible, while optogenetic approaches may prove useful. We identified and characterized a robust, blue-light-activated c-di-GMP phosphodiesterase (hydrolase) that complements a previously engineered red/near-infrared-light-regulated diguanylate cyclase (c-di-GMP synthase). These two enzymes form a dichromatic module for manipulating intracellular c-di-GMP levels in bacterial and nonbacterial cells.


Asunto(s)
GMP Cíclico/análogos & derivados , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Genética Microbiana/métodos , Optogenética/métodos , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Alphaproteobacteria/enzimología , Alphaproteobacteria/genética , Chromatiaceae/enzimología , Chromatiaceae/genética , GMP Cíclico/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Luz , Hidrolasas Diéster Fosfóricas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087536

RESUMEN

Lysobacter enzymogenes is a ubiquitous soil gammaproteobacterium that produces a broad-spectrum antifungal antibiotic, known as heat-stable antifungal factor (HSAF). To increase HSAF production for use against fungal crop diseases, it is important to understand how HSAF synthesis is regulated. To gain insights into transcriptional regulation of the HSAF synthesis gene cluster, we generated a library with deletion mutations in the genes predicted to encode response regulators of the two-component signaling systems in L. enzymogenes strain OH11. By quantifying HSAF production levels in the 45 constructed mutants, we identified two strains that produced significantly smaller amounts of HSAF. One of the mutations affected a gene encoding a conserved bacterial response regulator, PilR, which is commonly associated with type IV pilus synthesis. We determined that L. enzymogenes PilR regulates pilus synthesis and twitching motility via a traditional pathway, by binding to the pilA promoter and upregulating pilA expression. Regulation of HSAF production by PilR was found to be independent of pilus formation. We discovered that the pilR mutant contained significantly higher intracellular levels of the second messenger cyclic di-GMP (c-di-GMP) and that this was the inhibitory signal for HSAF production. Therefore, the type IV pilus regulator PilR in L. enzymogenes activates twitching motility while downregulating antibiotic HSAF production by increasing intracellular c-di-GMP levels. This study identifies a new role of a common pilus regulator in proteobacteria and provides guidance for increasing antifungal antibiotic production in L. enzymogenesIMPORTANCE PilR is a widespread response regulator of the two-component system known for regulating type IV pilus synthesis in proteobacteria. Here we report that, in the soil bacterium Lysobacter enzymogenes, PilR regulates pilus synthesis and twitching motility, as expected. Unexpectedly, PilR was also found to control intracellular levels of the second messenger c-di-GMP, which in turn inhibits production of the antifungal antibiotic HSAF. The coordinated production of type IV pili and antifungal antibiotics has not been observed previously.


Asunto(s)
Antifúngicos/metabolismo , GMP Cíclico/análogos & derivados , Fimbrias Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Lysobacter/genética , Lysobacter/metabolismo , Microbiología del Suelo , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , Fimbrias Bacterianas/metabolismo , Biblioteca de Genes , Familia de Multigenes , Mutación , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 111(28): 10167-72, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982160

RESUMEN

Bacteriophytochromes sense light in the near-infrared window, the spectral region where absorption by mammalian tissues is minimal, and their chromophore, biliverdin IXα, is naturally present in animal cells. These properties make bacteriophytochromes particularly attractive for optogenetic applications. However, the lack of understanding of how light-induced conformational changes control output activities has hindered engineering of bacteriophytochrome-based optogenetic tools. Many bacteriophytochromes function as homodimeric enzymes, in which light-induced conformational changes are transferred via α-helical linkers to the rigid output domains. We hypothesized that heterologous output domains requiring homodimerization can be fused to the photosensory modules of bacteriophytochromes to generate light-activated fusions. Here, we tested this hypothesis by engineering adenylate cyclases regulated by light in the near-infrared spectral window using the photosensory module of the Rhodobacter sphaeroides bacteriophytochrome BphG1 and the adenylate cyclase domain from Nostoc sp. CyaB1. We engineered several light-activated fusion proteins that differed from each other by approximately one or two α-helical turns, suggesting that positioning of the output domains in the same phase of the helix is important for light-dependent activity. Extensive mutagenesis of one of these fusions resulted in an adenylate cyclase with a sixfold photodynamic range. Additional mutagenesis produced an enzyme with a more stable photoactivated state. When expressed in cholinergic neurons in Caenorhabditis elegans, the engineered adenylate cyclase affected worm behavior in a light-dependent manner. The insights derived from this study can be applied to the engineering of other homodimeric bacteriophytochromes, which will further expand the optogenetic toolset.


Asunto(s)
Adenilil Ciclasas/biosíntesis , Proteínas Bacterianas/biosíntesis , Caenorhabditis elegans/metabolismo , Expresión Génica , Rayos Infrarrojos , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Adenilil Ciclasas/genética , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Caenorhabditis elegans/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Nostoc/genética , Nostoc/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
11.
J Bacteriol ; 198(1): 7-11, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26148715

RESUMEN

In recent years, Escherichia coli has served as one of a few model bacterial species for studying cyclic di-GMP (c-di-GMP) signaling. The widely used E. coli K-12 laboratory strains possess 29 genes encoding proteins with GGDEF and/or EAL domains, which include 12 diguanylate cyclases (DGC), 13 c-di-GMP-specific phosphodiesterases (PDE), and 4 "degenerate" enzymatically inactive proteins. In addition, six new GGDEF and EAL (GGDEF/EAL) domain-encoding genes, which encode two DGCs and four PDEs, have recently been found in genomic analyses of commensal and pathogenic E. coli strains. As a group of researchers who have been studying the molecular mechanisms and the genomic basis of c-di-GMP signaling in E. coli, we now propose a general and systematic dgc and pde nomenclature for the enzymatically active GGDEF/EAL domain-encoding genes of this model species. This nomenclature is intuitive and easy to memorize, and it can also be applied to additional genes and proteins that might be discovered in various strains of E. coli in future studies.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/clasificación , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Terminología como Asunto , GMP Cíclico/genética , GMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transducción de Señal
12.
Mol Microbiol ; 96(4): 728-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25662512

RESUMEN

Elevated levels of the second messenger c-di-GMP activate biosynthesis of an unknown exopolysaccharide (EPS) in the food-borne pathogen Listeria monocytogenes. This EPS strongly protects cells against disinfectants and desiccation, indicating its potential significance for listerial persistence in the environment and for food safety. We analyzed the potential phylogenetic origin of this EPS, determined its complete structure, characterized genes involved in its biosynthesis and hydrolysis and identified diguanylate cyclases activating its synthesis. Phylogenetic analysis of EPS biosynthesis proteins suggests that they have evolved within monoderms. Scanning electron microscopy revealed that L. monocytogenes EPS is cell surface-bound. Secreted carbohydrates represent exclusively cell-wall debris. Based on carbohydrate composition, linkage and NMR analysis, the structure of the purified EPS is identified as a ß-1,4-linked N-acetylmannosamine chain decorated with terminal α-1,6-linked galactose. All genes of the pssA-E operon are required for EPS production and so is a separately located pssZ gene. We show that PssZ has an EPS-specific glycosylhydrolase activity. Exogenously added PssZ prevents EPS-mediated cell aggregation and disperses preformed aggregates, whereas an E72Q mutant in the presumed catalytic residue is much less active. The diguanylate cyclases DgcA and DgcB, whose genes are located next to pssZ, are primarily responsible for c-di-GMP-dependent EPS production.


Asunto(s)
GMP Cíclico/análogos & derivados , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferasas/genética , Hexosaminas/análisis , Listeria monocytogenes/química , Listeria monocytogenes/ultraestructura , Microscopía Electrónica de Rastreo , Operón , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Filogenia , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/ultraestructura
13.
PLoS Pathog ; 10(8): e1004301, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25101646

RESUMEN

We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica/fisiología , Listeria monocytogenes/patogenicidad , Listeriosis/metabolismo , Animales , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Proteínas de Escherichia coli/metabolismo , Femenino , Listeria monocytogenes/genética , Listeriosis/genética , Ratones , Ratones Endogámicos BALB C , Liasas de Fósforo-Oxígeno/metabolismo , Transducción de Señal/fisiología , Virulencia/fisiología
14.
J Bacteriol ; 197(3): 406-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25448814

RESUMEN

There are numerous ways by which cyclic dimeric GMP (c-di-GMP) inhibits motility. Kuchma et al. (S. L. Kuchma, N. J. Delalez, L. M. Filkins, E. A. Snavely, J. P. Armitage, and G. A. O'Toole, J. Bacteriol. 197:420-430, 2015, http://dx.doi.org/10.1128/JB.02130-14) offer a new, previously unseen way of swarming motility inhibition in Pseudomonas aeruginosa PA14. This bacterium possesses a single flagellum with one rotor and two sets of stators, only one of which can provide torque for swarming. The researchers discovered that elevated levels of c-di-GMP inhibit swarming by skewing stator selection in favor of the nonfunctional, "bad" stators.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Locomoción , Pseudomonas aeruginosa/fisiología , GMP Cíclico/metabolismo
15.
Proteins ; 83(5): 799-804, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25645367

RESUMEN

The ability of bacteria to use cGMP as a second messenger has been controversial for decades. Recently, nucleotide cyclases from Rhodospirillum centenum, GcyA, and Xanthomonas campestris, GuaX, have been shown to possess guanylate cyclase activities. Enzymatic activities of these guanylate cyclases measured in vitro were low, which makes interpretation of the assays ambiguous. Protein sequence analysis at present is insufficient to distinguish between bacterial adenylate and guanylate cyclases, both of which belong to nucleotide cyclases of type III. We developed a simple method for discriminating between guanylate and adenylate cyclase activities in a physiologically relevant bacterial system. The method relies on the use of a mutant cAMP receptor protein, CRPG , constructed here. While wild-type CRP is activated exclusively by cAMP, CRPG can be activated by either cAMP or cGMP. Using CRP- and CRPG -dependent lacZ expression in two E. coli strains, we verified that R. centenum GcyA and X. campestris GuaX have primarily guanylate cyclase activities. Among two other bacterial nucleotide cyclases tested, one, GuaA from Azospillrillum sp. B510, proved to have guanylate cyclase activity, while the other one, Bradyrhizobium japonicum CyaA, turned out to function as an adenylate cyclase. The results obtained with this reporter system were in excellent agreement with direct measurements of cyclic nucleotides secreted by E. coli expressing nucleotide cyclase genes. The simple genetic screen developed here is expected to facilitate identification of bacterial guanylate cyclases and engineering of guanylate cyclases with desired properties.


Asunto(s)
Proteínas Bacterianas/química , Guanilato Ciclasa/química , Adenilil Ciclasas/química , GMP Cíclico/química , Pruebas de Enzimas
16.
Mol Microbiol ; 93(3): 439-52, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24942809

RESUMEN

In contrast to numerous enzymes involved in c-di-GMP synthesis and degradation in enterobacteria, only a handful of c-di-GMP receptors/effectors have been identified. In search of new c-di-GMP receptors, we screened the Escherichia coli ASKA overexpression gene library using the Differential Radial Capillary Action of Ligand Assay (DRaCALA) with fluorescently and radioisotope-labelled c-di-GMP. We uncovered three new candidate c-di-GMP receptors in E. coli and characterized one of them, BcsE. The bcsE gene is encoded in cellulose synthase operons in representatives of Gammaproteobacteria and Betaproteobacteria. The purified BcsE proteins from E. coli, Salmonella enterica and Klebsiella pneumoniae bind c-di-GMP via the domain of unknown function, DUF2819, which is hereby designated GIL, GGDEF I-site like domain. The RxGD motif of the GIL domain is required for c-di-GMP binding, similar to the c-di-GMP-binding I-site of the diguanylate cyclase GGDEF domain. Thus, GIL is the second protein domain, after PilZ, dedicated to c-di-GMP-binding. We show that in S. enterica, BcsE is not essential for cellulose synthesis but is required for maximal cellulose production, and that c-di-GMP binding is critical for BcsE function. It appears that cellulose production in enterobacteria is controlled by a two-tiered c-di-GMP-dependent system involving BcsE and the PilZ domain containing glycosyltransferase BcsA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosa/biosíntesis , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glucosiltransferasas/genética , Proteínas Bacterianas/química , GMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Glucosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Klebsiella pneumoniae/metabolismo , Mutagénesis Sitio-Dirigida , Operón , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Salmonella typhimurium/metabolismo , Transducción de Señal
17.
Nature ; 459(7249): 1015-8, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19536266

RESUMEN

The ability to respond to light is crucial for most organisms. BLUF is a recently identified photoreceptor protein domain that senses blue light using a FAD chromophore. BLUF domains are present in various proteins from the Bacteria, Euglenozoa and Fungi. Although structures of single-domain BLUF proteins have been determined, none are available for a BLUF protein containing a functional output domain; the mechanism of light activation in this new class of photoreceptors has thus remained poorly understood. Here we report the biochemical, structural and mechanistic characterization of a full-length, active photoreceptor, BlrP1 (also known as KPN_01598), from Klebsiella pneumoniae. BlrP1 consists of a BLUF sensor domain and a phosphodiesterase EAL output domain which hydrolyses cyclic dimeric GMP (c-di-GMP). This ubiquitous second messenger controls motility, biofilm formation, virulence and antibiotic resistance in the Bacteria. Crystal structures of BlrP1 complexed with its substrate and metal ions involved in catalysis or in enzyme inhibition provide a detailed understanding of the mechanism of the EAL-domain c-di-GMP phosphodiesterases. These structures also sketch out a path of light activation of the phosphodiesterase output activity. Photon absorption by the BLUF domain of one subunit of the antiparallel BlrP1 homodimer activates the EAL domain of the second subunit through allosteric communication transmitted through conserved domain-domain interfaces.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/química , 3',5'-GMP Cíclico Fosfodiesterasas/efectos de la radiación , Klebsiella pneumoniae/enzimología , Luz , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efectos de la radiación , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Regulación Alostérica/efectos de la radiación , Biocatálisis/efectos de la radiación , Dominio Catalítico , Cristalografía por Rayos X , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Metales/metabolismo , Modelos Moleculares , Fósforo/metabolismo , Fotones , Fotorreceptores Microbianos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
18.
Infect Immun ; 82(5): 1840-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24566626

RESUMEN

Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. Most of work on c-di-AMP signaling has been done in Gram-positive bacteria, firmicutes, and actinobacteria, where c-di-AMP signaling pathways affect potassium transport, cell wall structure, and antibiotic resistance. Little is known about c-di-AMP signaling in other bacteria. Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete that has a Gram-negative dual membrane. In this study, we demonstrated that B. burgdorferi BB0619, a DHH-DHHA1 domain protein (herein designated DhhP), functions as c-di-AMP phosphodiesterase. Recombinant DhhP hydrolyzed c-di-AMP to pApA in a Mn(2+)- or Mg(2+)-dependent manner. In contrast to c-di-AMP phosphodiesterases reported thus far, DhhP appears to be essential for B. burgdorferi growth both in vitro and in the mammalian host. Inactivation of the chromosomal dhhP gene could be achieved only in the presence of a plasmid-encoded inducible dhhP gene. The conditional dhhP mutant had a dramatic increase in intracellular c-di-AMP level in comparison to the isogenic wild-type strain. Unlike what has been observed in Gram-positive bacteria, elevated cellular c-di-AMP in B. burgdorferi did not result in an increased resistance to ß-lactamase antibiotics, suggesting that c-di-AMP's functions in spirochetes differ from those in Gram-positive bacteria. In addition, the dhhP mutant was defective in induction of the σ(S) factor, RpoS, and the RpoS-dependent outer membrane virulence factor OspC, which uncovers an important role of c-di-AMP in B. burgdorferi virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/citología , Borrelia burgdorferi/enzimología , Enfermedad de Lyme/microbiología , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Antibacterianos/farmacología , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Técnicas Bacteriológicas , Borrelia burgdorferi/patogenicidad , Farmacorresistencia Bacteriana/genética , Electroforesis en Gel de Poliacrilamida , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Immunoblotting , Ratones , Hidrolasas Diéster Fosfóricas/genética , Estructura Terciaria de Proteína , Transducción de Señal , Virulencia
19.
Microbiology (Reading) ; 160(Pt 1): 198-208, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24126349

RESUMEN

Previously, the RubisCO-compromised spontaneous adaptive Rhodobacter sphaeroides mutant, strain 16PHC, was shown to derepress the expression of genes that encode the nitrogenase complex under normal repressive conditions. As a result of this adaptation, the active nitrogenase complex restored redox balance, thus allowing strain 16PHC to grow under photoheterotrophic conditions in the absence of an exogenous electron acceptor. A combination of whole genome pyrosequencing and whole genome microarray analyses was employed to identify possible loci responsible for the observed phenotype. Mutations were found in two genes, glnA and nifA, whose products are involved in the regulatory cascade that controls nitrogenase complex gene expression. In addition, a nucleotide reversion within the nifK gene, which encodes a subunit of the nitrogenase complex, was also identified. Subsequent genetic, physiological and biochemical studies revealed alterations that led to derepression of the synthesis of an active nitrogenase complex in strain 16PHC.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo , Rhodobacter sphaeroides/enzimología , Rhodobacter sphaeroides/genética , Análisis Mutacional de ADN , Sitios Genéticos , Genoma Bacteriano , Análisis por Micromatrices , Mutación , Oxidación-Reducción , Rhodobacter sphaeroides/crecimiento & desarrollo , Rhodobacter sphaeroides/metabolismo , Análisis de Secuencia de ADN
20.
PLoS Pathog ; 8(2): e1002493, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319440

RESUMEN

Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP), which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742) resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434) resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367) abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125) substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766) had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly useful in anti-pathogen applications. In contrast to many studies in other bacteria, Bdellovibrio shows specificity and lack of overlap in c-di-GMP signalling pathways.


Asunto(s)
Bdellovibrio/genética , Bdellovibrio/patogenicidad , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bdellovibrio/crecimiento & desarrollo , Bdellovibrio/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Liasas de Fósforo-Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA