Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(31): e2305001120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490534

RESUMEN

Real-world networks are neither regular nor random, a fact elegantly explained by mechanisms such as the Watts-Strogatz or the Barabási-Albert models, among others. Both mechanisms naturally create shortcuts and hubs, which while enhancing the network's connectivity, also might yield several undesired navigational effects: They tend to be overused during geodesic navigational processes-making the networks fragile-and provide suboptimal routes for diffusive-like navigation. Why, then, networks with complex topologies are ubiquitous? Here, we unveil that these models also entropically generate network bypasses: alternative routes to shortest paths which are topologically longer but easier to navigate. We develop a mathematical theory that elucidates the emergence and consolidation of network bypasses and measure their navigability gain. We apply our theory to a wide range of real-world networks and find that they sustain complexity by different amounts of network bypasses. At the top of this complexity ranking we found the human brain, which points out the importance of these results to understand the plasticity of complex systems.


Asunto(s)
Encéfalo , Humanos , Difusión
2.
Phys Rev Lett ; 132(16): 167401, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38701463

RESUMEN

Understanding how cooperative behaviors can emerge from competitive interactions is an open problem in biology and social sciences. While interactions are usually modeled as pairwise networks, the units of many real-world systems can also interact in groups of three or more. Here, we introduce a general framework to extend pairwise games to higher-order networks. By studying social dilemmas on hypergraphs with a tunable structure, we find an explosive transition to cooperation triggered by a critical number of higher-order games. The associated bistable regime implies that an initial critical mass of cooperators is also required for the emergence of prosocial behavior. Our results show that higher-order interactions provide a novel explanation for the survival of cooperation.

3.
Chaos ; 34(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437870

RESUMEN

In this work, we analyze how reputation-based interactions influence the emergence of innovations. To do so, we make use of a dynamic model that mimics the discovery process by which, at each time step, a pair of individuals meet and merge their knowledge to eventually result in a novel technology of higher value. The way in which these pairs are brought together is found to be crucial for achieving the highest technological level. Our results show that when the influence of reputation is weak or moderate, it induces an acceleration of the discovery process with respect to the neutral case (purely random coupling). However, an excess of reputation is clearly detrimental, because it leads to an excessive concentration of knowledge in a small set of people, which prevents a diversification of the technologies discovered and, in addition, leads to societies in which a majority of individuals lack technical capabilities.

4.
Philos Trans A Math Phys Eng Sci ; 380(2227): 20200412, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35599564

RESUMEN

The behaviour of individuals is a main actor in the control of the spread of a communicable disease and, in turn, the spread of an infectious disease can trigger behavioural changes in a population. Here, we study the emergence of individuals' protective behaviours in response to the spread of a disease by considering two different social attitudes within the same population: concerned and risky. Generally speaking, concerned individuals have a larger risk aversion than risky individuals. To study the emergence of protective behaviours, we couple, to the epidemic evolution of a susceptible-infected-susceptible model, a decision game based on the perceived risk of infection. Using this framework, we find the effect of the protection strategy on the epidemic threshold for each of the two subpopulations (concerned and risky), and study under which conditions risky individuals are persuaded to protect themselves or, on the contrary, can take advantage of a herd immunity by remaining healthy without protecting themselves, thanks to the shield provided by concerned individuals. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.


Asunto(s)
Epidemias , Epidemias/prevención & control , Humanos
5.
Philos Trans A Math Phys Eng Sci ; 380(2214): 20210119, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34802272

RESUMEN

Together with seasonal effects inducing outdoor or indoor activities, the gradual easing of prophylaxis caused second and third waves of SARS-CoV-2 to emerge in various countries. Interestingly, data indicate that the proportion of infections belonging to the elderly is particularly small during periods of low prevalence and continuously increases as case numbers increase. This effect leads to additional stress on the health care system during periods of high prevalence. Furthermore, infections peak with a slight delay of about a week among the elderly compared to the younger age groups. Here, we provide a mechanistic explanation for this phenomenology attributable to a heterogeneous prophylaxis induced by the age-specific severity of the disease. We model the dynamical adoption of prophylaxis through a two-strategy game and couple it with an SIR spreading model. Our results also indicate that the mixing of contacts among the age groups strongly determines the delay between their peaks in prevalence and the temporal variation in the distribution of cases. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.


Asunto(s)
COVID-19 , Anciano , Humanos , SARS-CoV-2
6.
Chaos Solitons Fractals ; 158: 112012, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35370369

RESUMEN

The lack of medical treatments and vaccines upon the arrival of the SARS-CoV-2 virus has made non-pharmaceutical interventions the best allies in safeguarding human lives in the face of the COVID-19 pandemic. Here we propose a self-organized epidemic model with multi-scale control policies that are relaxed or strengthened depending on the extent of the epidemic outbreak. We show that optimizing the balance between the effects of epidemic control and the associated socio-economic cost is strongly linked to the stringency of control measures. We also show that non-pharmaceutical interventions acting at different spatial scales, from creating social bubbles at the household level to constraining mobility between different cities, are strongly interrelated. We find that policy functionality changes for better or worse depending on network connectivity, meaning that some populations may allow for less restrictive measures than others if both have the same resources to respond to the evolving epidemic.

7.
Chaos ; 29(8): 083126, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472487

RESUMEN

We study the structural and dynamical consequences of damage in spatial neuronal networks. Inspired by real in vitro networks, we construct directed networks embedded in a two-dimensional space and follow biological rules for designing the wiring of the system. As a result, synthetic cultures display strong metric correlations similar to those observed in real experiments. In its turn, neuronal dynamics is incorporated through the Izhikevich model adopting the parameters derived from observation in real cultures. We consider two scenarios for damage, targeted attacks on those neurons with the highest out-degree and random failures. By analyzing the evolution of both the giant connected component and the dynamical patterns of the neurons as nodes are removed, we observe that network activity halts for a removal of 50% of the nodes in targeted attacks, much lower than the 70% node removal required in the case of random failures. Notably, the decrease of neuronal activity is not gradual. Both damage scenarios portray "boosts" of activity just before full silencing that are not present in equivalent random (Erdös-Rényi) graphs. These boosts correspond to small, spatially compact subnetworks that are able to maintain high levels of activity. Since these subnetworks are absent in the equivalent random graphs, we hypothesize that metric correlations facilitate the existence of local circuits sufficiently integrated to maintain activity, shaping an intrinsic mechanism for resilience.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Modelos Neurológicos , Red Nerviosa/fisiopatología , Neuronas , Enfermedad de Parkinson/fisiopatología , Animales , Humanos
8.
J Theor Biol ; 453: 1-13, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-29738720

RESUMEN

Here we develop an epidemic model that accounts for long-range dispersal of pathogens between plants. This model generalizes the classical compartmental models-Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Recovered (SIR)-to take into account those factors that are key to understand epidemics in real plant populations. These ingredients are the spatial characteristics of the plots and fields in which plants are embedded and the effect of long-range dispersal of pathogens. The spatial characteristics are included through the use of random rectangular graphs which allow to consider the effects of the elongation of plots and fields, while the long-range dispersal is implemented by considering transformations, such as the Mellin and Laplace transforms, of a generalization of the adjacency matrix of the geometric graph. Our results point out that long-range dispersal favors the propagation of pathogens while the elongation of plant plots increases the epidemic threshold and decreases dramatically the number of affected plants. Interestingly, our model is able of reproducing the existence of patchy regions of infected plants and the absence of a clear propagation front centered in the initial infected plants, as it is observed in real plant epidemics.


Asunto(s)
Enfermedades Transmisibles/transmisión , Interacciones Huésped-Patógeno/fisiología , Modelos Biológicos , Enfermedades de las Plantas/estadística & datos numéricos , Dispersión de las Plantas/fisiología , Enfermedades Transmisibles/epidemiología , Simulación por Computador , Susceptibilidad a Enfermedades/epidemiología , Epidemias , Plantas/microbiología , Plantas/virología
9.
PLoS Comput Biol ; 11(3): e1004129, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25816286

RESUMEN

Heterocyst differentiation in cyanobacteria filaments is one of the simplest examples of cellular differentiation and pattern formation in multicellular organisms. Despite of the many experimental studies addressing the evolution and sustainment of heterocyst patterns and the knowledge of the genetic circuit underlying the behavior of single cyanobacterium under nitrogen deprivation, there is still a theoretical gap connecting these two macroscopic and microscopic processes. As an attempt to shed light on this issue, here we explore heterocyst differentiation under the paradigm of systems biology. This framework allows us to formulate the essential dynamical ingredients of the genetic circuit of a single cyanobacterium into a set of differential equations describing the time evolution of the concentrations of the relevant molecular products. As a result, we are able to study the behavior of a single cyanobacterium under different external conditions, emulating nitrogen deprivation, and simulate the dynamics of cyanobacteria filaments by coupling their respective genetic circuits via molecular diffusion. These two ingredients allow us to understand the principles by which heterocyst patterns can be generated and sustained. In particular, our results point out that, by including both diffusion and noisy external conditions in the computational model, it is possible to reproduce the main features of the formation and sustainment of heterocyst patterns in cyanobacteria filaments as observed experimentally. Finally, we discuss the validity and possible improvements of the model.


Asunto(s)
Biología Computacional/métodos , Cianobacterias/fisiología , Modelos Biológicos , Diferenciación Celular
10.
Chaos ; 26(6): 065302, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27368792

RESUMEN

Network science has helped to understand the organization principles of the interactions among the constituents of large complex systems. However, recently, the high resolution of the data sets collected has allowed to capture the different types of interactions coexisting within the same system. A particularly important example is that of systems with positive and negative interactions, a usual feature appearing in social, neural, and ecological systems. The interplay of links of opposite sign presents natural difficulties for generalizing typical concepts and tools applied to unsigned networks and, moreover, poses some questions intrinsic to the signed nature of the network, such as how are negative interactions balanced by positive ones so to allow the coexistence and survival of competitors/foes within the same system? Here, we show that synchronization phenomenon is an ideal benchmark for uncovering such balance and, as a byproduct, to assess which nodes play a critical role in the overall organization of the system. We illustrate our findings with the analysis of synthetic and real ecological networks in which facilitation and competitive interactions coexist.

11.
Chaos ; 24(4): 043101, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25554021

RESUMEN

Recently [L. Lacasa and J. Gómez-Gardeñes, Phys. Rev. Lett. 110, 168703 (2013)], a fractal dimension has been proposed to characterize the geometric structure of networks. This measure is an extension to graphs of the so called correlation dimension, originally proposed by Grassberger and Procaccia to describe the geometry of strange attractors in dissipative chaotic systems. The calculation of the correlation dimension of a graph is based on the local information retrieved from a random walker navigating the network. In this contribution, we study such quantity for some limiting synthetic spatial networks and obtain analytical results on agreement with the previously reported numerics. In particular, we show that up to first order, the correlation dimension ß of integer lattices ℤ(d) coincides with the Haussdorf dimension of their coarsely equivalent Euclidean spaces, ß = d.

12.
Phys Rev Lett ; 110(16): 168703, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23679650

RESUMEN

We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.


Asunto(s)
Redes Comunitarias , Modelos Teóricos , Algoritmos , Procesos Estocásticos , Remodelación Urbana
13.
Chaos ; 23(4): 043103, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24387542

RESUMEN

A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.


Asunto(s)
Relojes Biológicos , Modelos Teóricos
14.
Front Public Health ; 11: 1193100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475770

RESUMEN

Introduction: The COVID-19 pandemic has had a significant impact on public health and social systems worldwide. This study aims to evaluate the efficacy of various policies and restrictions implemented by different countries to control the spread of the virus. Methods: To achieve this objective, a compartmental model is used to quantify the "social permeability" of a population, which reflects the inability of individuals to remain in confinement and continue social mixing allowing the spread of the virus. The model is calibrated to fit and recreate the dynamics of the epidemic spreading of 42 countries, mainly taking into account reported deaths and mobility across the populations. Results: The results indicate that low-income countries have a harder time slowing the advance of the pandemic, even if the virus did not initially propagate as fast as in wealthier countries, showing the disparities between countries in their ability to mitigate the spread of the disease and its impact on vulnerable populations. Discussion: This research contributes to a better understanding of the socioeconomic and environmental factors that affect the spread of the virus and the need for equitable policy measures to address the disparities in the global response to the pandemic.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias , Factores Socioeconómicos , Salud Pública , Políticas
15.
Sci Rep ; 13(1): 765, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641475

RESUMEN

Many complex networked systems exhibit volatile dynamic interactions among their vertices, whose order and persistence reverberate on the outcome of dynamical processes taking place on them. To quantify and characterize the similarity of the snapshots of a time-varying network-a proxy for the persistence,-we present a study on the persistence of the interactions based on a descriptor named temporality. We use the average value of the temporality, [Formula: see text], to assess how "special" is a given time-varying network within the configuration space of ordered sequences of snapshots. We analyse the temporality of several empirical networks and find that empirical sequences are much more similar than their randomized counterparts. We study also the effects on [Formula: see text] induced by the (time) resolution at which interactions take place.

16.
Phys Rev E ; 108(2-1): 024305, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37723687

RESUMEN

Compartmental models are the most widely used framework for modeling infectious diseases. These models have been continuously refined to incorporate all the realistic mechanisms that can shape the course of an epidemic outbreak. Building on a compartmental model that accounts for early detection and isolation of infectious individuals through testing, in this article we focus on the viability of detection processes under limited availability of testing resources, and we study how the latter impacts on the detection rate. Our results show that, in addition to the well-known epidemic transition at R_{0}=1, a second transition occurs at R_{0}^{★}>1 pinpointing the collapse of the detection system and, as a consequence, the switch from a regime of mitigation to a regime in which the pathogen spreads freely. We characterize the epidemic phase diagram of the model as a function of the relevant control parameters: the basic reproduction number, the maximum detection capacity of the system, and the fraction of individuals in shelter. Our analysis thus provides a valuable tool for estimating the detection resources and the level of confinement needed to face epidemic outbreaks.


Asunto(s)
Epidemias , Humanos , Brotes de Enfermedades
17.
Sci Rep ; 13(1): 16481, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777581

RESUMEN

In the absence of vaccines, the most widespread reaction to curb the COVID-19 pandemic worldwide was the implementation of lockdowns or stay-at-home policies. Despite the reported usefulness of such policies, their efficiency was highly constrained by socioeconomic factors determining their feasibility and their associated outcome in terms of mobility reduction and the subsequent limitation of social activity. Here we investigate the impact of lockdown policies on the mobility patterns of different socioeconomic classes in the three major cities of Colombia during the first wave of the COVID-19 pandemic. In global terms, we find a consistent positive correlation between the reduction in mobility levels and the socioeconomic stratum of the population in the three cities, implying that those with lower incomes were less capable of adopting the aforementioned policies. Our analysis also suggests a strong restructuring of the mobility network of lowest socioeconomic strata during COVID-19 lockdown, increasing their endogenous mixing while hampering their connections with wealthiest areas due to a sharp reduction in long-distance trips.


Asunto(s)
COVID-19 , Humanos , Colombia/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Pandemias , Políticas , Factores Socioeconómicos
18.
PLoS Negl Trop Dis ; 17(11): e0011087, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011274

RESUMEN

According to the World Health Organization (WHO), dengue is the most common acute arthropod-borne viral infection in the world. The spread of dengue and other infectious diseases is closely related to human activity and mobility. In this paper we analyze the effect of introducing mobility restrictions as a public health policy on the total number of dengue cases within a population. To perform the analysis, we use a complex metapopulation in which we implement a compartmental propagation model coupled with the mobility of individuals between the patches. This model is used to investigate the spread of dengue in the municipalities of Caldas (CO). Two scenarios corresponding to different types of mobility restrictions are applied. In the first scenario, the effect of restricting mobility is analyzed in three different ways: a) limiting the access to the endemic node but allowing the movement of its inhabitants, b) restricting the diaspora of the inhabitants of the endemic node but allowing the access of outsiders, and c) a total isolation of the inhabitants of the endemic node. In this scenario, the best simulation results are obtained when specific endemic nodes are isolated during a dengue outbreak, obtaining a reduction of up to 2.5% of dengue cases. Finally, the second scenario simulates a total isolation of the network, i.e., mobility between nodes is completely limited. We have found that this control measure increases the number of total dengue cases in the network by 2.36%.


Asunto(s)
Dengue , Humanos , Dengue/epidemiología , Colombia/epidemiología , Brotes de Enfermedades , Ciudades , Simulación por Computador
19.
JMIR Public Health Surveill ; 9: e40514, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37213190

RESUMEN

BACKGROUND: The initial wave of the COVID-19 pandemic placed a tremendous strain on health care systems worldwide. To mitigate the spread of the virus, many countries implemented stringent nonpharmaceutical interventions (NPIs), which significantly altered human behavior both before and after their enactment. Despite these efforts, a precise assessment of the impact and efficacy of these NPIs, as well as the extent of human behavioral changes, remained elusive. OBJECTIVE: In this study, we conducted a retrospective analysis of the initial wave of COVID-19 in Spain to better comprehend the influence of NPIs and their interaction with human behavior. Such investigations are vital for devising future mitigation strategies to combat COVID-19 and enhance epidemic preparedness more broadly. METHODS: We used a combination of national and regional retrospective analyses of pandemic incidence alongside large-scale mobility data to assess the impact and timing of government-implemented NPIs in combating COVID-19. Additionally, we compared these findings with a model-based inference of hospitalizations and fatalities. This model-based approach enabled us to construct counterfactual scenarios that gauged the consequences of delayed initiation of epidemic response measures. RESULTS: Our analysis demonstrated that the pre-national lockdown epidemic response, encompassing regional measures and heightened individual awareness, significantly contributed to reducing the disease burden in Spain. The mobility data indicated that people adjusted their behavior in response to the regional epidemiological situation before the nationwide lockdown was implemented. Counterfactual scenarios suggested that without this early epidemic response, there would have been an estimated 45,400 (95% CI 37,400-58,000) fatalities and 182,600 (95% CI 150,400-233,800) hospitalizations compared to the reported figures of 27,800 fatalities and 107,600 hospitalizations, respectively. CONCLUSIONS: Our findings underscore the significance of self-implemented prevention measures by the population and regional NPIs before the national lockdown in Spain. The study also emphasizes the necessity for prompt and precise data quantification prior to enacting enforced measures. This highlights the critical interplay between NPIs, epidemic progression, and human behavior. This interdependence presents a challenge in predicting the impact of NPIs before they are implemented.


Asunto(s)
COVID-19 , Pandemias , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Estudios Retrospectivos , España/epidemiología
20.
Evol Hum Sci ; 5: e9, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37587930

RESUMEN

Here we investigate the effects of extensive sociality and mobility on the oral microbiome of 138 Agta hunter-gatherers from the Philippines. Our comparisons of microbiome composition showed that the Agta are more similar to Central African BaYaka hunter-gatherers than to neighbouring farmers. We also defined the Agta social microbiome as a set of 137 oral bacteria (only 7% of 1980 amplicon sequence variants) significantly influenced by social contact (quantified through wireless sensors of short-range interactions). We show that large interaction networks including strong links between close kin, spouses and even unrelated friends can significantly predict bacterial transmission networks across Agta camps. Finally, we show that more central individuals to social networks are also bacterial supersharers. We conclude that hunter-gatherer social microbiomes are predominantly pathogenic and were shaped by evolutionary tradeoffs between extensive sociality and disease spread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA