Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Angew Chem Int Ed Engl ; 62(20): e202213567, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36894506

RESUMEN

Reagent-free electronic biosensors capable of analyzing disease markers directly in unprocessed body fluids will enable the development of simple & affordable devices for personalized healthcare monitoring. Here we report a powerful and versatile nucleic acid-based reagent-free electronic sensing system. The signal transduction is based on the kinetics of an electrode-tethered molecular pendulum-a rigid double stranded DNA with one of the strands displaying an analyte-binding aptamer and the other featuring a redox probe-that exhibits field-induced transport modulated by receptor occupancy. Using chronoamperometry, which enables the sensor to circumvent the conventional Debye length limitation, the binding of an analyte can be monitored as these species increase the hydrodynamic drag. The sensing platform demonstrates a low femtomolar quantification limit and minimal cross-reactivity in analyzing cardiac biomarkers in whole blood collected from patients with chronic heart failure.


Asunto(s)
Aptámeros de Nucleótidos , Ácidos Nucleicos , Humanos , Aptámeros de Nucleótidos/química , ADN/química , Electrodos , Biomarcadores
2.
J Am Chem Soc ; 144(40): 18338-18349, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173381

RESUMEN

The development of robust biosensing strategies that can be easily implemented in everyday life remains a challenge for the future of modern biosensor research. While several reagentless approaches have attempted to address this challenge, they often achieve user-friendliness through sacrificing sensitivity or universality. While acceptable for certain applications, these trade-offs hinder the widespread adoption of reagentless biosensing technologies. Here, we report a novel approach to reagentless biosensing that achieves high sensitivity, rapid detection, and universality using the SARS-CoV-2 virus as a model target. Universality is achieved by using nanoscale molecular pendulums, which enables reagentless electrochemical biosensing through a variable antibody recognition element. Enhanced sensitivity and rapid detection are accomplished by incorporating the coffee-ring phenomenon into the sensing scheme, allowing for target preconcentration on a ring-shaped electrode. Using this approach, we obtained limits of detection of 1 fg/mL and 20 copies/mL for the SARS-CoV-2 nucleoproteins and viral particles, respectively. In addition, clinical sample analysis showed excellent agreement with Ct values from PCR-positive SARS-CoV-2 patients.


Asunto(s)
Técnicas Biosensibles , COVID-19 , COVID-19/diagnóstico , Electrodos , Humanos , Nucleoproteínas , SARS-CoV-2/genética
3.
J Am Chem Soc ; 143(4): 1722-1727, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33481575

RESUMEN

The development of new methods for direct viral detection using streamlined and ideally reagent-free assays is a timely and important, but challenging, problem. The challenge of combatting the COVID-19 pandemic has been exacerbated by the lack of rapid and effective methods to identify viral pathogens like SARS-CoV-2 on-demand. Existing gold standard nucleic acid-based approaches require enzymatic amplification to achieve clinically relevant levels of sensitivity and are not typically used outside of a laboratory setting. Here, we report reagent-free viral sensing that directly reads out the presence of viral particles in 5 minutes using only a sensor-modified electrode chip. The approach relies on a class of electrode-tethered sensors bearing an analyte-binding antibody displayed on a negatively charged DNA linker that also features a tethered redox probe. When a positive potential is applied, the sensor is transported to the electrode surface. Using chronoamperometry, the presence of viral particles and proteins can be detected as these species increase the hydrodynamic drag on the sensor. This report is the first virus-detecting assay that uses the kinetic response of a probe/virus complex to analyze the complexation state of the antibody. We demonstrate the performance of this sensing approach as a means to detect, within 5 min, the presence of the SARS-CoV-2 virus and its associated spike protein in test samples and in unprocessed patient saliva.


Asunto(s)
Técnicas Biosensibles/métodos , Prueba de COVID-19/métodos , COVID-19/virología , Técnicas Electroquímicas/métodos , SARS-CoV-2/aislamiento & purificación , Virión/aislamiento & purificación , Técnicas Biosensibles/instrumentación , Prueba de COVID-19/instrumentación , Técnicas Electroquímicas/instrumentación , Electrodos , Humanos , Pruebas en el Punto de Atención , Saliva/virología
4.
Proc Biol Sci ; 284(1851)2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28330921

RESUMEN

Previous studies of magnetoreception in honey bees, Apis mellifera, focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen.


Asunto(s)
Abejas/fisiología , Óxido Ferrosoférrico , Campos Magnéticos , Abdomen , Animales
5.
ACS Cent Sci ; 8(1): 102-109, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35106377

RESUMEN

Phage display is a critical tool for developing antibodies. However, existing approaches require many time-consuming rounds of biopanning and screening of potential candidates due to a high rate of failure during validation. Herein, we present a rapid on-cell phage display platform which recapitulates the complex in vivo binding environment to produce high-performance human antibodies in a short amount of time. Selection is performed in a highly stringent heterogeneous mixture of cells to quickly remove nonspecific binders. A microfluidic platform then separates antigen-presenting cells with high throughput and specificity. An unsupervised machine learning algorithm analyzes sequences of phage from all pools to identify the structural trends that contribute to affinity and proposes ideal candidates for validation. In a proof-of-concept screen against human Frizzled-7, a key ligand in the Wnt signaling pathway, antibodies with picomolar affinity were discovered in two rounds of selection that outperformed current gold-standard reagents. This approach, termed µCellect, is low cost, high throughput, and compatible with a wide variety of cell types, enabling widespread adoption for antibody development.

6.
Nat Chem ; 13(5): 428-434, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33686229

RESUMEN

The development of reagentless sensors that can detect molecular analytes in biological fluids could enable a broad range of applications in personalized health monitoring. However, only a limited set of molecular inputs can currently be detected using reagentless sensors. Here, we report a sensing mechanism that is compatible with the analysis of proteins that are important physiological markers of stress, allergy, cardiovascular health, inflammation and cancer. The sensing method is based on the motion of an inverted molecular pendulum that exhibits field-induced transport modulated by the presence of a bound analyte. We measure the sensor's electric field-mediated transport using the electron-transfer kinetics of an attached reporter molecule. Using time-resolved electrochemical measurements that enable unidirectional motion of our sensor, the presence of an analyte bound to our sensor complex can be tracked continuously in real time. We show that this sensing approach is compatible with making measurements in blood, saliva, urine, tears and sweat and that the sensors can collect data in situ in living animals.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Animales , Humanos , Ratones , Modelos Moleculares
7.
Lab Chip ; 21(22): 4464-4476, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34651637

RESUMEN

Loss of photoreceptors due to retinal degeneration is a major cause of untreatable visual impairment and blindness. Cell replacement therapy, using retinal stem cell (RSC)-derived photoreceptors, holds promise for reconstituting damaged cell populations in the retina. One major obstacle preventing translation to the clinic is the lack of validated markers or strategies to prospectively identify these rare cells in the retina and subsequently enrich them. Here, we introduce a microfluidic platform that combines nickel micromagnets, herringbone structures, and a design enabling varying flow velocities among three compartments to facilitate a highly efficient enrichment of RSCs. In addition, we developed an affinity enrichment strategy based on cell-surface markers that was utilized to isolate RSCs from the adult ciliary epithelium. We showed that targeting a panel of three cell surface markers simultaneously facilitates the enrichment of RSCs to 1 : 3 relative to unsorted cells. Combining the microfluidic platform with single-cell whole-transcriptome profiling, we successfully identified four differentially expressed cell surface markers that can be targeted simultaneously to yield an unprecedented 1 : 2 enrichment of RSCs relative to unsorted cells. We also identified transcription factors (TFs) that play functional roles in maintenance, quiescence, and proliferation of RSCs. This level of analysis for the first time identified a spectrum of molecular and functional properties of RSCs.


Asunto(s)
Microfluídica , Retina , Animales , Diferenciación Celular , Proliferación Celular , Perfilación de la Expresión Génica , Ratones , Células Madre
8.
ACS Appl Mater Interfaces ; 10(41): 34811-34816, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30265796

RESUMEN

Retinal stem cells (RSCs) are promising candidates for patient-derived cell therapy to repair damage to the eye; however, RSCs are rare in retinal samples and lack validated markers, making cell sorting a significant challenge. Here we report a high-resolution deterministic lateral displacement microfluidic device that profiles RSCs in distinct size populations. Only by developing a chip that promotes cell tumbling do we limit cell deformation through apertured channels and thereby increase the size-sorting resolution of the device. We systematically explore a spectrum of microstructures, including optimized notched pillars, to study and then rationally promote cell tumbling. We find that RSCs exhibit larger diameters than most ciliary epithelial cells, an insight into RSC morphology that allows enrichment from biological samples.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Epiteliales/metabolismo , Dispositivos Laboratorio en un Chip , Retina/metabolismo , Células Madre/metabolismo , Animales , Células Cultivadas , Células Epiteliales/citología , Humanos , Ratones , Retina/citología , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA