Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 69: 139-153, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29146239

RESUMEN

Cognitive impulsivity is a heritable trait believed to represent the behavior that defines the volition to initiate alcohol drinking. We have previously shown that a neuronal Toll-like receptor 4 (TLR4) signal located in the central amygdala (CeA) and ventral tegmental area (VTA) controls the initiation of binge drinking in alcohol-preferring P rats, and TLR4 expression is upregulated by alcohol-induced corticotropin-releasing factor (CRF) at these sites. However, the function of the TLR4 signal in the nucleus accumbens shell (NAc-shell), a site implicated in the control of reward, drug-seeking behavior and impulsivity and the contribution of other signal-associated genes, are still poorly understood. Here we report that P rats have an innately activated TLR4 signal in NAc-shell neurons that co-express the α2 GABAA receptor subunit and CRF prior to alcohol exposure. This signal is not present in non-alcohol drinking NP rats. The TLR4 signal is sustained by a CRF amplification loop, which includes TLR4-mediated CRF upregulation through PKA/CREB activation and CRF-mediated TLR4 upregulation through the CRF type 1 receptor (CRFR1) and the MAPK/ERK pathway. NAc-shell Infusion of a neurotropic, non-replicating herpes simplex virus vector for TLR4-specific small interfering RNA (pHSVsiTLR4) inhibits TLR4 expression and cognitive impulsivity, implicating the CRF-amplified TLR4 signal in impulsivity regulation.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Conducta Impulsiva/fisiología , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de GABA-A/metabolismo , Receptor Toll-Like 4/metabolismo , Consumo de Bebidas Alcohólicas/metabolismo , Animales , Conducta Animal/fisiología , Comportamiento de Búsqueda de Drogas , Subunidades de Proteína/metabolismo , Ratas , Transducción de Señal/fisiología , Receptor Toll-Like 4/genética
2.
J Neurochem ; 138(6): 806-20, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27344019

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain.


Asunto(s)
Antígenos Ly/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Animales Recién Nacidos , Antígenos Ly/genética , Química Encefálica/genética , Proteínas Ligadas a GPI , Humanos , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Células PC12 , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/genética , Lóbulo Temporal/química , Distribución Tisular
3.
Stress ; 19(2): 235-47, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27023221

RESUMEN

Childhood stress and trauma are associated with substance use disorders in adulthood, but the neurological changes that confer increased vulnerability are largely unknown. In this study, maternal separation (MS) stress, restricted to the pre-weaning period, was used as a model to study mechanisms of protracted effects of childhood stress/traumatic experiences on binge drinking and impulsivity. Using an operant self-administration model of binge drinking and a delay discounting assay to measure impulsive-like behavior, we report that early life stress due to MS facilitated acquisition of binge drinking and impulsivity during adulthood in rats. Previous studies have shown heightened levels of corticotropin releasing factor (CRF) after MS, and here, we add that MS increased expression levels of GABA(A) α2 subunit in central stress circuits. To investigate the precise role of these circuits in regulating impulsivity and binge drinking, the CRF1 receptor antagonist antalarmin and the novel GABA(A) α2 subunit ligand 3-PBC were infused into the central amygdala (CeA) and medial prefrontal cortex (mPFC). Antalarmin and 3-PBC at each site markedly reduced impulsivity and produced profound reductions on binge-motivated alcohol drinking, without altering responding for sucrose. Furthermore, whole-cell patch-clamp studies showed that low concentrations of 3-PBC directly reversed the effect of relatively high concentrations of ethanol on α2ß3γ2 GABA(A) receptors, by a benzodiazepine site-independent mechanism. Together, our data provide strong evidence that maternal separation, i.e. early life stress, is a risk factor for binge drinking, and is linked to impulsivity, another key risk factor for excessive alcohol drinking. We further show that pharmacological manipulation of CRF and GABA receptor signaling is effective to reverse binge drinking and impulsive-like behavior in MS rats. These results provide novel insights into the role of the brain stress systems in the development of impulsivity and excessive alcohol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Conducta Impulsiva/fisiología , Privación Materna , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de GABA-A/metabolismo , Estrés Psicológico/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Condicionamiento Operante/efectos de los fármacos , Etanol/administración & dosificación , Femenino , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Pirimidinas/farmacología , Pirroles/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Riesgo , Autoadministración , Vitamina B 12/análogos & derivados
4.
J Anat ; 227(1): 21-33, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26018729

RESUMEN

Craniofacial malformations are common congenital defects caused by failed midline inductive signals. These midline defects are associated with exposure of the fetus to exogenous teratogens and with inborn genetic errors such as those found in Down, Patau, Edwards' and Smith-Lemli-Opitz syndromes. Yet, there are no studies that analyze contributions of synchronous neurocranial and neural development in these disorders. Here we present the first in-depth analysis of malformations of the basicranium of a holoprosencephalic (HPE) trisomy 18 (T18; Edwards' syndrome) fetus with synophthalmic cyclopia and alobar HPE. With a combination of traditional gross dissection and state-of-the-art computed tomography, we demonstrate the deleterious effects of T18 caused by a translocation at 18p11.31. Bony features included a single developmentally unseparated frontal bone, and complete dual absence of the anterior cranial fossa and ethmoid bone. From a superior view with the calvarium plates removed, there was direct visual access to the orbital foramen and hard palate. Both the eyes and the pituitary gland, normally protected by bony structures, were exposed in the cranial cavity and in direct contact with the brain. The middle cranial fossa was shifted anteriorly, and foramina were either missing or displaced to an abnormal location due to the absence or misplacement of its respective cranial nerve (CN). When CN development was conserved in its induction and placement, the respective foramen developed in its normal location albeit with abnormal gross anatomical features, as seen in the facial nerve (CNVII) and the internal acoustic meatus. More anteriorly localized CNs and their foramina were absent or heavily disrupted compared with posterior ones. The severe malformations exhibited in the cranial fossae, orbital region, pituitary gland and sella turcica highlight the crucial involvement of transcription factors such as TGIF, which is located on chromosome 18 and contributes to neural patterning, in the proper development of neural and cranial structures. Our study of a T18 specimen emphasizes the intricate interplay between bone and brain development in midline craniofacial abnormalities in general.


Asunto(s)
Nervios Craneales , Holoprosencefalia/genética , Base del Cráneo/anomalías , Trisomía , Cadáver , Cromosomas Humanos Par 18 , Nervios Craneales/diagnóstico por imagen , Nervios Craneales/embriología , Nervios Craneales/patología , Feto , Genotipo , Holoprosencefalia/patología , Humanos , Base del Cráneo/diagnóstico por imagen , Base del Cráneo/embriología , Tomografía Computarizada por Rayos X , Síndrome de la Trisomía 18
5.
J Anat ; 227(3): 255-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26278930

RESUMEN

The study of inborn genetic errors can lend insight into mechanisms of normal human development and congenital malformations. Here, we present the first detailed comparison of cranial and neuro pathology in two exceedingly rare human individuals with cyclopia and alobar holoprosencephaly (HPE) in the presence and absence of aberrant chromosome 18 (aCh18). The aCh18 fetus contained one normal Ch18 and one with a pseudo-isodicentric duplication of chromosome 18q and partial deletion of 18p from 18p11.31 where the HPE gene, TGIF, resides, to the p terminus. In addition to synophthalmia, the aCh18 cyclopic malformations included a failure of induction of most of the telencephalon - closely approximating anencephaly, unchecked development of brain stem structures, near absence of the sphenoid bone and a malformed neurocranium and viscerocranium that constitute the median face. Although there was complete erasure of the olfactory and superior nasal structures, rudiments of nasal structures derived from the maxillary bone were evident, but with absent pharyngeal structures. The second non-aCh18 cyclopic fetus was initially classified as a true Cyclops, as it appeared to have a proboscis and one median eye with a single iris, but further analysis revealed two eye globes as expected for synophthalmic cyclopia. Furthermore, the proboscis was associated with the medial ethmoid ridge, consistent with an incomplete induction of these nasal structures, even as the nasal septum and paranasal sinuses were apparently developed. An important conclusion of this study is that it is the brain that predicts the overall configuration of the face, due to its influence on the development of surrounding skeletal structures. The present data using a combination of macroscopic, computed tomography (CT) and magnetic resonance imaging (MRI) techniques provide an unparalleled analysis on the extent of the effects of median defects, and insight into normal development and patterning of the brain, face and their skeletal support.


Asunto(s)
Encéfalo/embriología , Aberraciones Cromosómicas , Cromosomas Humanos Par 18 , Cara/embriología , Holoprosencefalia , Cadáver , Edad Gestacional , Holoprosencefalia/embriología , Holoprosencefalia/genética , Humanos , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X
6.
INNOSC Theranostics Pharmacol Sci ; 7(2): 1472, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38766548

RESUMEN

The Carter Center has estimated that the addiction crisis in the United States (US), if continues to worsen at the same rate, may cost the country approximately 16 trillion dollars by 2030. In recent years, the well-being of youth has been compromised by not only the coronavirus disease 2019 pandemic but also the alarming global opioid crisis, particularly in the US. Each year, deadly opioid drugs claim hundreds of thousands of lives, contributing to an ever-rising death toll. In addition, maternal usage of opioids and other drugs during pregnancy could compromise the neurodevelopment of children. A high rate of DNA polymorphic antecedents compounds the occurrence of epigenetic insults involving methylation of specific essential genes related to normal brain function. These genetic antecedent insults affect healthy DNA and mRNA transcription, leading to a loss of proteins required for normal brain development and function in youth. Myelination in the frontal cortex, a process known to extend until the late 20s, delays the development of proficient executive function and decision-making abilities. Understanding this delay in brain development, along with the presence of potential high-risk antecedent polymorphic variants or alleles and generational epigenetics, provides a clear rationale for embracing the Brain Research Commission's suggestion to mimic fitness programs with an adaptable brain health check (BHC). Implementing the BHC within the educational systems in the US and other countries could serve as an effective initiative for proactive therapies aimed at reducing juvenile mental health problems and eventually criminal activities, addiction, and other behaviors associated with reward deficiency syndrome.

7.
Gene Protein Dis ; 3(1)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38766604

RESUMEN

The D2 dopamine receptor (DRD2) gene has garnered substantial attention as one of the most extensively studied genes across various neuropsychiatric disorders. Since its initial association with severe alcoholism in 1990, particularly through the identification of the DRD2 Taq A1 allele, numerous international investigations have been conducted to elucidate its role in different conditions. As of February 22, 2024, there are 5485 articles focusing on the DRD2 gene listed in PUBMED. There have been 120 meta-analyses with mixed results. In our opinion, the primary cause of negative reports regarding the association of various DRD2 gene polymorphisms is the inadequate screening of controls, not adequately eliminating many hidden reward deficiency syndrome behaviors. Moreover, pleiotropic effects of DRD2 variants have been identified in neuropsychologic, neurophysiologic, stress response, social stress defeat, maternal deprivation, and gambling disorder, with epigenetic DNA methylation and histone post-translational negative methylation identified as discussed in this article. There are 70 articles listed in PUBMED for DNA methylation and 20 articles listed for histone methylation as of October 19, 2022. For this commentary, we did not denote DNA and/or histone methylation; instead, we provided a brief summary based on behavioral effects. Based on the fact that Blum and Noble characterized the DRD2 Taq A1 allele as a generalized reward gene and not necessarily specific alcoholism, it now behooves the field to find ways to either use effector moieties to edit the neuroepigenetic insults or possibly harness the idea of potentially removing negative mRNA-reduced expression by inducing "dopamine homeostasis."

8.
Hippocampus ; 23(12): 1476-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23996503

RESUMEN

Recent research has determined that newborn neurons in the dentate gyrus of the hippocampus of the macaque are frequently adjacent to astrocytes immunoreactive for fatty acid binding protein-7 (FABP7). To investigate if a similar relationship between FABP7-positive (FABP7+) astrocytes and proliferating cells exists in the rodent brain, sections of brains from juvenile rats were stained by immunohistochemistry to demonstrate newborn cells (antibody to Ki67 protein) and FABP7+ astrocytes. In rat brains, FABP7+ astrocytes were particularly abundant in the dentate gyrus of the hippocampus and were frequently close to dividing cells immunoreactive for Ki67 protein. FABP7+ astrocytes were also present in the olfactory bulbs, arcuate nucleus of the hypothalamus, and in the dorsal medulla subjacent to the area postrema, sites where more modest numbers of newborn neurons can also be found. These data suggest that regional accumulations of FABP7+ astrocytes may represent reservoirs of cells having the potential for neurogenesis. Because FABP7+ astrocytes are particularly abundant in the hippocampus, and since the gene for FABP7 has been linked to Alzheimer's disease, age-related changes in FABP7+ astrocytes (mitochondrial degeneration) may be relevant to age-associated disorders of the hippocampus.


Asunto(s)
Astrocitos/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Hipocampo/citología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Nicho de Células Madre/fisiología , Animales , Recuento de Células , Proteína de Unión a los Ácidos Grasos 7 , Hipocampo/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
9.
J Cell Sci ; 124(Pt 5): 735-44, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21321327

RESUMEN

Golgi-to-plasma-membrane trafficking of synaptic-like microvesicle (SLMV) proteins, vesicular acetylcholine transporter (VAChT) and synaptophysin (SYN), and a large dense-core vesicle (LDCV) protein, chromogranin A (CgA), was investigated in undifferentiated neuroendocrine PC12 cells. Live cell imaging and 20°C block-release experiments showed that VAChT-GFP, SYN-GFP and CgA-RFP specifically and transiently cohabitated in a distinct sorting compartment during cold block and then separated into synaptic protein transport vesicles (SPTVs) and LDCVs, after release from temperature block. We found that in this trans-Golgi subcompartment there was colocalization of SPTV and LDCV proteins, most significantly with VAMP4 and Golgin97, and to some degree with TGN46, but not at all with TGN38. Moreover, some SNAP25 and VAMP2, two subunits of the exocytic machinery, were also recruited onto this compartment. Thus, in neuroendocrine cells, synaptic vesicle and LDCV proteins converge briefly in a distinct trans-Golgi network subcompartment before sorting into SPTVs and LDCVs, ultimately for delivery to the plasma membrane. This specialized sorting compartment from which SPTVs and LDCVs bud might facilitate the acquisition of common exocytic machinery needed on the membranes of these vesicles.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Células Neuroendocrinas/citología , Células Neuroendocrinas/metabolismo , Neuronas/citología , Vesículas Sinápticas/metabolismo , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura , Animales , Células Cultivadas , Cromogranina A/genética , Cromogranina A/metabolismo , Frío , Exocitosis/fisiología , Neuronas/metabolismo , Células PC12 , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
10.
J Racial Ethn Health Disparities ; 10(4): 2039-2053, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36068482

RESUMEN

The heroin epidemic has existed for decades, but a sharp rise in opioid overdose deaths (OODs) jolted the nation in the mid-twenty-teens and continues as a major health crisis to this day. Although the new wave of OODs was initially approached as a rural problem impacting a White/Caucasian demographic, surveillance records suggest severe impacts on African Americans and urban-dwelling individuals, which have been largely underreported. The focus of this report is on specific trends in OOD rates in Black and White residents in states with a significant Black urban population and declared as hotspots for OOD: (Maryland (MD), Illinois (IL), Michigan (MI), and Pennsylvania (PA)), and Washington District of Columbia (DC). We compare OODs by type of opioid, across ethnicities, across city/rural demographics, and to homicide rates using 2013-2020 data acquired from official Chief Medical Examiners' or Departments of Health (DOH) reports. With 2013 or 2014 as baseline, the OOD rate in major cities (Baltimore, Chicago, Detroit, Philadelphia) were elevated two-fold over all other regions of their respective state. In DC, Wards 7 and 8 OODs were consistently greater than other jurisdictions, until 2020 when the rate of change of OODs increased for the entire city. Ethnicity-wise, Black OOD rates exceeded White rates by four- to six-fold, with fentanyl and heroin having a disproportionate impact on Black opioid deaths. This disparity was aggravated by its intersection with the COVID-19 pandemic in 2020. African Americans and America's urban dwellers are vulnerable populations in need of social and political resources to address the ongoing opioid epidemic in under-resourced communities.


Asunto(s)
Negro o Afroamericano , Disparidades en Atención de Salud , Sobredosis de Opiáceos , Epidemia de Opioides , Determinantes Sociales de la Salud , Población Urbana , Adolescente , Humanos , Analgésicos Opioides/efectos adversos , Negro o Afroamericano/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/etnología , Heroína/envenenamiento , Epidemia de Opioides/estadística & datos numéricos , Epidemia de Opioides/tendencias , Pandemias , Philadelphia/epidemiología , Estados Unidos/epidemiología , Población Urbana/estadística & datos numéricos , Blanco/estadística & datos numéricos , Sobredosis de Opiáceos/epidemiología , Sobredosis de Opiáceos/etnología , Sobredosis de Opiáceos/mortalidad , Determinantes Sociales de la Salud/etnología , Determinantes Sociales de la Salud/estadística & datos numéricos , Determinantes Sociales de la Salud/tendencias , Disparidades en Atención de Salud/etnología , Disparidades en Atención de Salud/estadística & datos numéricos , Disparidades en Atención de Salud/tendencias , Disparidades en el Estado de Salud
11.
J Addict Psychiatry ; 7(1): 5-516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164471

RESUMEN

In the USA alone, opioid use disorder (OUD) affects approximately 27 million people. While the number of prescriptions may be declining due to increased CDC guidance and prescriber education, fatalities due to fentanyl-laced street heroin are still rising. Our laboratory has extended the overall concept of both substance and non-substance addictive behaviors, calling it "Reward Deficiency Syndrome (RDS)." Who are its victims, and how do we get this unwanted disorder? Is RDS caused by genes (Nature), environment (Neuro-epigenetics, Nurture), or both? Recent research identifies resting-state functional connectivity in the brain reward circuitry as a crucial factor. Analogously, it is of importance to acknowledge that the cumulative discharge of dopamine, governed by the nucleus accumbens (NAc) and modulated by an array of additional neurotransmitters, constitutes a cornerstone of an individual's overall well-being. Neuroimaging reveals that high-risk individuals exhibit a blunted response to stimuli, potentially due to DNA polymorphisms or epigenetic alterations. This discovery has given rise to the idea of a diminished 'thrill,' though we must consider whether this 'thrill' may have been absent from birth due to high-risk genetic predispositions for addiction. This article reviews this issue and suggests the general concept of the importance of "induction of dopamine homeostasis." We suggest coupling a validated genetic assessment (e.g., GARS) with pro-dopamine regulation (KB220) as one possible frontline modality in place of prescribing potent addictive opioids for OUD except for short time harm reduction. Could gene editing offer a 'cure' for this undesirable genetic modification at birth, influenced by the environment and carried over generations, leading to impaired dopamine and other neurotransmitter imbalances, as seen in RDS? Through dedicated global scientific exploration, we hope for a future where individuals are liberated from pain and disease, achieving an optimal state of well-being akin to the proverbial 'Garden of Eden'.

12.
Psychol Res Behav Manag ; 16: 4839-4857, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38050640

RESUMEN

Loneliness, an established risk factor for both, mental and physical morbidity, is a mounting public health concern. However, the neurobiological mechanisms underlying loneliness-related morbidity are not yet well defined. Here we examined the role of genes and associated DNA risk polymorphic variants that are implicated in loneliness via genetic and epigenetic mechanisms and may thus point to specific therapeutic targets. Searches were conducted on PubMed, Medline, and EMBASE databases using specific Medical Subject Headings terms such as loneliness and genes, neuro- and epigenetics, addiction, affective disorders, alcohol, anti-reward, anxiety, depression, dopamine, cancer, cardiovascular, cognitive, hypodopaminergia, medical, motivation, (neuro)psychopathology, social isolation, and reward deficiency. The narrative literature review yielded recursive collections of scientific and clinical evidence, which were subsequently condensed and summarized in the following key areas: (1) Genetic Antecedents: Exploration of multiple genes mediating reward, stress, immunity and other important vital functions; (2) Genes and Mental Health: Examination of genes linked to personality traits and mental illnesses providing insights into the intricate network of interaction converging on the experience of loneliness; (3) Epigenetic Effects: Inquiry into instances of loneliness and social isolation that are driven by epigenetic methylations associated with negative childhood experiences; and (4) Neural Correlates: Analysis of loneliness-related affective states and cognitions with a focus on hypodopaminergic reward deficiency arising in the context of early life stress, eg, maternal separation, underscoring the importance of parental support early in life. Identification of the individual contributions by various (epi)genetic factors presents opportunities for the creation of innovative preventive, diagnostic, and therapeutic approaches for individuals who cope with persistent feelings of loneliness. The clinical facets and therapeutic prospects associated with the current understanding of loneliness, are discussed emphasizing the relevance of genes and DNA risk polymorphic variants in the context of loneliness-related morbidity.

13.
Biomedicines ; 10(4)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35453620

RESUMEN

While opioids are a powerful class of drugs that inhibit transmission of pain signals, their use is tarnished by the current epidemic of opioid use disorder (OUD) and overdose deaths. Notwithstanding published reports, there remain gaps in our knowledge of opioid receptor mechanisms and their role in opioid seeking behavior. Thus, novel insights into molecular, neurogenetic and neuropharmacological bases of OUD are needed. We propose that an addictive endophenotype may not be entirely specific to the drug of choice but rather may be generalizable to altered brain reward circuits impacting net mesocorticolimbic dopamine release. We suggest that genetic or epigenetic alterations across dopaminergic reward systems lead to uncontrollable self-administration of opioids and other drugs. For instance, diminished availability via knockout of dopamine D3 receptor (DRD3) increases vulnerability to opioids. Building upon this concept via the use of a sophisticated polymorphic risk analysis in a human cohort of chronic opioid users, we found evidence for a higher frequency of polymorphic DRD3 risk allele (rs6280) than opioid receptor µ1 (rs1799971). In conclusion, while opioidergic mechanisms are involved in OUD, dopamine-related receptors may have primary influence on opioid-seeking behavior in African Americans. These findings suggest OUD-targeted novel and improved neuropharmacological therapies may require focus on DRD3-mediated regulation of dopaminergic homeostasis.

14.
Curr Psychopharmacol ; 11(1): 11-17, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046837

RESUMEN

Background: Repeated cocaine administration changes histone acetylation and methylation on Lys residues and Deoxyribonucleic acid (DNA) within the nucleus accumbens (NAc). Recently Nestler's group explored histone Arg (R) methylation in reward processing models. Damez-Werno et al. (2016) reported that during human investigations and animal self-administration experiments, the histone mark protein-R-methyltransferase-6 (PRMT6) and asymmetric dimethylation of R2 on histone H3 (H3R2me2a) decreased in the rodent and cocaine-dependent human NAc. Overexpression of PRMT6 in D2-MSNs in all NAc neurons increased cocaine seeking, whereas PRMT6 overexpression in D1-MSNs protects against cocaine-seeking. Hypothesis: The hypothesis is that dopaminylation (H3R2me2a binding) occurs in psychostimulant use disorder (PSU), and the binding inhibitor Srcin1, like the major DRD2 A2 allelic polymorphism, protects against psychostimulant seeking behavior by normalizing nucleus accumbens (NAc) dopamine expression. Discussion: Numerous publications confirmed the association between the DRD2 Taq A1 allele (30-40 lower D2 receptor numbers) and severe cocaine dependence. Lepack et al. (2020) found that acute cocaine increases dopamine in NAc synapses, and results in histone H3 glutamine 5 dopaminylation (H3Q5dop) and consequent inhibition of D2 expression. The inhibition increases with chronic cocaine use and accompanies cocaine withdrawal. They also found that the Src kinase signaling inhibitor 1 (Srcin1 or p140CAP) during cocaine withdrawal reduced H3R2me2a binding. Consequently, this inhibited dopaminylation induced a "homeostatic brake." Conclusion: The decrease in Src signaling in NAc D2-MSNs, (like the DRD2 Taq A2 allele, a well-known genetic mechanism protective against SUD) normalizes the NAc dopamine expression and decreases cocaine reward and motivation to self-administer cocaine. The Srcin1 may be an important therapeutic target.

15.
Curr Psychiatry Res Rev ; 18(2): 125-143, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36118157

RESUMEN

Background: There is a shortage of clinical studies examining the efficacy of Nicotinamide Adenine Dinucleotide and Enkephalinase infusions (IV1114589NAD) in treating Substance Use Disorder (SUD). Objective: This study aims to provide evidence that IV1114589NAD infusions significantly attenuate substance craving behavior. Methods: The study cohort consisted of addicted poly-drug, mixed gender, multi-ethnic individuals resistant to standard treatment. The investigation utilized Likert-Scales to assess behavioral outcomes. Results: Using Wilcoxon signed-rank tests and sign tests, our team detected significant results by comparing baseline to post outcome scores after IV1114589NAD injections: craving scores (P=1.063E-9); anxiety (P=5.487E-7); and depression (P=1.763E-4). A significant reduction in cravings, anxiety, and depression followed a dose-dependent linear trend. Linear trend analyses showed a significant relationship between NAD infusions and decreasing scores for cravings (P=0.015), anxiety (P=0.003), and depression (P=8.74E-5). A urine analysis was conducted on a subset of 40 patients midway through the study to assess relapse; 100% of the urine samples analyzed failed to detect illicit substance use. Discussion: The opioid crisis in America has claimed close to 800,000 lives since 2004; daily deaths are estimated to stand at 127, and in 2021, over 107,000 deaths were due to overdose. There is an urgency to find safe, side-effect-free solutions. Current interventions, such as Naltrexone implants, are invasive and may interfere with dopamine homeostasis leading to an anti-reward phenomenon. Larger randomized double-blinded placebo-controlled studies are needed to elucidate further the significance of the results presented in this study. The current pilot study provides useful preliminary data regarding the effectiveness of IV1114589NAD infusions in SUD treatment. Conclusion: This pilot study provides significant evidence that NAD infusions are beneficial in the treatment of SUD. This investigation serves as a rationale to extend these findings onto future research investigating the use of NAD/NADH as a stand-alone treatment, especially in patients showing high genetic risk as measured in the Genetic Addiction Risk Severity (GARS) test. Utilizing GARS will help provide a real personalized therapeutic approach to treat Reward Deficiency Syndrome (RDS).

16.
J Pers Med ; 12(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743793

RESUMEN

Excessive alcohol intake, e.g., binge drinking, is a serious and mounting public health problem in the United States and throughout the world. Hence the need for novel insights into the underlying neurobiology that may help improve prevention and therapeutic strategies. Therefore, our group employed a darkness-induced alcohol intake protocol to define the reward deficiency domains of alcohol and other substance use disorders in terms of reward pathways' reduced dopamine signaling and its restoration via specifically-designed therapeutic compounds. It has been determined that KCNK13 and RASGRF2 genes, respectively, code for potassium two pore domain channel subfamily K member 13 and Ras-specific guanine nucleotide-releasing factor 2, and both genes have important dopamine-related functions pertaining to alcohol binge drinking. We present a hypothesis that identification of KCNK13 and RASGRF2 genes' risk polymorphism, coupled with genetic addiction risk score (GARS)-guided precision pro-dopamine regulation, will mitigate binge alcohol drinking. Accordingly, we review published reports on the benefits of this unique approach and provide data on favorable outcomes for both binge-drinking animals and drunk drivers, including reductions in alcohol intake and prevention of relapse to drinking behavior. Since driving under the influence of alcohol often leads to incarceration rather than rehabilitation, there is converging evidence to support the utilization of GARS with or without KCNK13 and RASGRF2 risk polymorphism in the legal arena, whereby the argument that "determinism" overrides the "free will" account may be a plausible defense strategy. Obviously, this type of research is tantamount to helping resolve a major problem related to polydrug abuse.

17.
J Pers Med ; 12(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36143170

RESUMEN

Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies, including GWAS. To develop an accurate test to help identify those at risk for at least Alcohol Use Disorder (AUD), Blum's group developed the Genetic Addiction Risk Severity (GARS) test, consisting of ten genes and eleven associated risk alleles. In order to statistically validate the selection of these risk alleles measured by GARS, we applied strict analysis to studies that investigated the association of each polymorphism with AUD or AUD-related conditions published from 1990 until 2021. This analysis calculated the Hardy-Weinberg Equilibrium of each polymorphism in cases and controls. If available, the Pearson's χ2 test or Fisher's exact test was applied to comparisons of the gender, genotype, and allele distribution. The statistical analyses found the OR, 95% CI for OR, and a post-risk for 8% estimation of the population's alcoholism prevalence revealed a significant detection. The OR results showed significance for DRD2, DRD3, DRD4, DAT1, COMT, OPRM1, and 5HTT at 5%. While most of the research related to GARS is derived from our laboratory, we are encouraging more independent research to confirm our findings.

18.
Psychol Res Behav Manag ; 14: 2115-2134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34949945

RESUMEN

This is a review of research on "Precision Behavioral Management" of substance use disorder (SUD). America is experiencing a high prevalence of substance use disorder, primarily involving legal and illegal opioid use. A 3000% increase in treatment for substance abuse has occurred between 2000 and 2016. Unfortunately, present day treatment of opioid abuse involves providing replacement therapy with powerful opioids to, at best, induce harm reduction, not prophylaxis. These interventions do not enhance gene expression and restore the balance of the brain reward system's neurotransmitters. We are proposing a generalized approach called "Precision Behavioral Management". This approach includes 1) using the Genetic Addiction Risk Severity (GARS, a 10 candidate polymorphic gene panel shown to predict ASI-alcohol and drug severity) to assess early pre-disposition to substance use disorder; 2) using a validated reward deficiency syndrome (RDS) questionnaire; 3) utilization of the Comprehensive Analysis of Reported Drugs (CARD™) to assess treatment compliance and abstinence from illicit drugs during treatment, and, importantly; 4) utilization of a "Pro-dopamine regulator (KB220)" (via IV or oral [KB220Z] delivery systems) to optimize gene expression, restore the balance of the Brain Reward Cascade's neurotransmitter systems and prevent relapse by induction of dopamine homeostasis, and; 5) utilization of targeted DNA polymorphic reward genes to direct mRNA genetic expression profiling during the treatment process. Incorporation of these events can be applied to not only the under-considered African-American RDS community, but all victims of RDS, as a demonstration of a paradigm shift that uniquely provides a novel putative "standard of care" based on DNA guided precision nutrition therapy to induce "dopamine homeostasis" and rebalance neurotransmitters in the Brain Reward Cascade. We are also developing a Reward Deficiency Syndrome Diagnostic Criteria (RDSDC) to assist in potential tertiary treatment.

19.
JIMD Rep ; 59(1): 60-68, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977031

RESUMEN

Population studies point to regional and ethnicity-specific differences in genetic predisposition for some lysosomal storage disorders (LSDs). The aim of the study was to determine the prevalence of the three treatable forms of lysosomal storage disorders (Gaucher disease [GD], Pompe disease [PD], and Fabry disease [FD]) in a cohort of mostly urban-dwelling individuals of African ancestry, a previously unknown genetic landscape for LSDs. Large-scale selective multistep biochemical and genetic screening was performed in patients seeking healthcare for various health concerns. Fluorimetric enzyme assays for GD, PD, and FD were performed on dried blood spots. Targeted gene sequencing was performed on samples that showed significantly lower enzyme activities (<10% of control mean) after two tiers of enzymatic screening. A total of 5287 unique samples representing a cross section of patients who visited Howard University Hospital and College of Medicine from 2015 to 2017 were included in the study. Study samples were obtained from a population where ~90% reported as African-American, ~5% Hispanic, and <5% Caucasian or other. Regarding GD, three subjects had either homozygous or heterozygous mutations in the GBA gene. As to PD, eight subjects were either homozygous or compound heterozygous for GAA mutations, including three novel mutations: (a) c.472 A > G; p.T158A, (b) c.503G > T; p.R168L, (c) c.1985del. Regarding FD, two subjects had pathogenic GLA mutations, and four had single nucleotide polymorphisms in the 5'UTR, previously implicated in modulating gene expression. The findings highlight a higher incidence of abnormal enzyme levels and pathogenic mutations in the target population reflecting ancestry-based specific genotype and phenotype variations.

20.
Mol Neurobiol ; 58(7): 3335-3346, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33683627

RESUMEN

Millions of Americans experience pain daily. In 2017, opioid overdose claimed 64,000 lives increasing to 84,000 lives in 2020, resulting in a decrease in national life expectancy. Chronic opioid use results in dependency, drug tolerance, neuroadaptation, hyperalgesia, potential addictive behaviors, or Reward Deficiency Syndrome (RDS) caused by a hypodopaminergia. Evaluation of pain clinic patients with the Genetic Addiction Risk Score (GARS) test and the Addiction Severity Index (ASI- Media Version V) revealed that GARS scores equal to or greater than 4 and 7 alleles significantly predicted drug and alcohol severity, respectively. We utilized RT-PCR for SNP genotyping and multiplex PCR/capillary electrophoresis for fragment analysis of the role of eleven alleles in a ten-reward gene panel, reflecting the activity of brain reward circuitry in 121 chronic opioid users. The study consisted of 55 males and 66 females averaging ages 54 and 53 years of age, respectively. The patients included Caucasians, African Americans, Hispanics, and Asians. Inclusion criteria mandated that the Morphine Milligram Equivalent (MME) was 30-600 mg/day (males) and 20 to 180 mg/day (females) for treatment of chronic pain over 12 months. Ninety-six percent carried four or more risk alleles, and 73% carried seven or more risk alleles, suggesting a high predictive risk for opioid and alcohol dependence, respectively. These data indicate that chronic, legally prescribed opioid users attending a pain clinic possess high genetic risk for drug and alcohol addiction. Early identification of genetic risk, using the GARS test upon entry to treatment, may prevent iatrogenic induced opioid dependence.


Asunto(s)
Analgésicos Opioides/efectos adversos , Dolor Crónico/genética , Predisposición Genética a la Enfermedad/genética , Prescripción Inadecuada/efectos adversos , Trastornos Relacionados con Opioides/genética , Gravedad del Paciente , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Analgésicos Opioides/administración & dosificación , Conducta Adictiva/diagnóstico , Conducta Adictiva/genética , Dolor Crónico/diagnóstico , Dolor Crónico/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Relacionados con Opioides/diagnóstico , Proyectos Piloto , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA