Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7879): 174-181, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616072

RESUMEN

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Asunto(s)
Encéfalo/citología , Forma de la Célula , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Atlas como Asunto , Biomarcadores/metabolismo , Encéfalo/anatomía & histología , Encéfalo/embriología , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Neocórtex/anatomía & histología , Neocórtex/citología , Neocórtex/embriología , Neocórtex/metabolismo , Neurogénesis , Neuroglía/citología , Neuronas/citología , RNA-Seq , Reproducibilidad de los Resultados
2.
Nature ; 598(7879): 188-194, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616074

RESUMEN

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Asunto(s)
Ganglios Basales/citología , Corteza Cerebral/citología , Vías Nerviosas , Neuronas/citología , Tálamo/citología , Animales , Ganglios Basales/anatomía & histología , Corteza Cerebral/anatomía & histología , Masculino , Ratones , Ratones Endogámicos C57BL , Tálamo/anatomía & histología
3.
Proc Natl Acad Sci U S A ; 120(14): e2216231120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36976764

RESUMEN

Histamine is a conserved neuromodulator in mammalian brains and critically involved in many physiological functions. Understanding the precise structure of the histaminergic network is the cornerstone in elucidating its function. Herein, using histidine decarboxylase (HDC)-CreERT2 mice and genetic labeling strategies, we reconstructed a whole-brain three dimensional (3D) structure of histaminergic neurons and their outputs at 0.32 × 0.32 × 2 µm3 pixel resolution with a cutting-edge fluorescence microoptical sectioning tomography system. We quantified the fluorescence density of all brain areas and found that histaminergic fiber density varied significantly among brain regions. The density of histaminergic fiber was positively correlated with the amount of histamine release induced by optogenetic stimulation or physiological aversive stimulation. Lastly, we reconstructed a fine morphological structure of 60 histaminergic neurons via sparse labeling and uncovered the largely heterogeneous projection pattern of individual histaminergic neurons. Collectively, this study reveals an unprecedented whole-brain quantitative analysis of histaminergic projections at the mesoscopic level, providing a foundation for future functional histaminergic study.


Asunto(s)
Encéfalo , Histamina , Ratones , Animales , Encéfalo/metabolismo , Neuronas/metabolismo , Mapeo Encefálico , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Mamíferos/metabolismo
4.
Nat Methods ; 19(1): 111-118, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34887551

RESUMEN

Recent whole-brain mapping projects are collecting large-scale three-dimensional images using modalities such as serial two-photon tomography, fluorescence micro-optical sectioning tomography, light-sheet fluorescence microscopy, volumetric imaging with synchronous on-the-fly scan and readout or magnetic resonance imaging. Registration of these multi-dimensional whole-brain images onto a standard atlas is essential for characterizing neuron types and constructing brain wiring diagrams. However, cross-modal image registration is challenging due to intrinsic variations of brain anatomy and artifacts resulting from different sample preparation methods and imaging modalities. We introduce a cross-modal registration method, mBrainAligner, which uses coherent landmark mapping and deep neural networks to align whole mouse brain images to the standard Allen Common Coordinate Framework atlas. We build a brain atlas for the fluorescence micro-optical sectioning tomography modality to facilitate single-cell mapping, and used our method to generate a whole-brain map of three-dimensional single-neuron morphology and neuron cell types.


Asunto(s)
Encéfalo/citología , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Algoritmos , Animales , Aprendizaje Profundo , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Flujo de Trabajo
5.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38836835

RESUMEN

Neocortex is a complex structure with different cortical sublayers and regions. However, the precise positioning of cortical regions can be challenging due to the absence of distinct landmarks without special preparation. To address this challenge, we developed a cytoarchitectonic landmark identification pipeline. The fluorescence micro-optical sectioning tomography method was employed to image the whole mouse brain stained by general fluorescent nucleotide dye. A fast 3D convolution network was subsequently utilized to segment neuronal somas in entire neocortex. By approach, the cortical cytoarchitectonic profile and the neuronal morphology were analyzed in 3D, eliminating the influence of section angle. And the distribution maps were generated that visualized the number of neurons across diverse morphological types, revealing the cytoarchitectonic landscape which characterizes the landmarks of cortical regions, especially the typical signal pattern of barrel cortex. Furthermore, the cortical regions of various ages were aligned using the generated cytoarchitectonic landmarks suggesting the structural changes of barrel cortex during the aging process. Moreover, we observed the spatiotemporally gradient distributions of spindly neurons, concentrated in the deep layer of primary visual area, with their proportion decreased over time. These findings could improve structural understanding of neocortex, paving the way for further exploration with this method.


Asunto(s)
Aprendizaje Profundo , Neocórtex , Neuronas , Animales , Neocórtex/citología , Ratones , Ratones Endogámicos C57BL , Masculino , Imagenología Tridimensional/métodos , Tomografía Óptica/métodos
6.
Cell Mol Life Sci ; 81(1): 39, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214751

RESUMEN

Colorectal cancer (CRC) is characterized by a complex tumor inflammatory microenvironment, while angiogenesis and immunosuppression frequently occur concomitantly. However, the exact mechanism that controls angiogenesis and immunosuppression in CRC microenvironment remains unclear. Herein, we found that expression levels of lipid raft protein STOML2 were increased in CRC and were associated with advanced disease stage and poor survival outcomes. Intriguingly, we revealed that STOML2 is essential for CRC tumor inflammatory microenvironment, which induces angiogenesis and facilitates tumor immune escape simultaneously both in vitro and in vivo. Moreover, tumors with STOML2 overexpression showed effective response to anti-angiogenesis treatment and immunotherapy in vivo. Mechanistically, STOML2 regulates CRC proliferation, angiogenesis, and immune escape through activated NF-κB signaling pathway via binding to TRADD protein, resulting in upregulation of CCND1, VEGF, and PD-L1. Furthermore, treatment with NF-κB inhibitor dramatically reversed the ability of proliferation and angiogenesis. Clinically, we also observed a strong positive correlation between STOML2 expression and Ki67, CD31, VEGFC and PD-1 of CD8+T cell expression. Taken together, our results provided novel insights into the role of STOML2 in CRC inflammatory microenvironment, which may present a therapeutic opportunity for CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas de la Membrana , FN-kappa B , Microambiente Tumoral , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Regulación hacia Arriba , Microdominios de Membrana , Proteínas de la Membrana/genética
7.
Proc Natl Acad Sci U S A ; 119(40): e2202536119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161898

RESUMEN

Through synaptic connections, long-range circuits transmit information among neurons and connect different brain regions to form functional motifs and execute specific functions. Tracing the synaptic distribution of specific neurons requires submicron-level resolution information. However, it is a great challenge to map the synaptic terminals completely because these fine structures span multiple regions, even in the whole brain. Here, we develop a pipeline including viral tracing, sample embedding, fluorescent micro-optical sectional tomography, and big data processing. We mapped the whole-brain distribution and architecture of long projections of the parvalbumin neurons in the basal forebrain at the synaptic level. These neurons send massive projections to multiple downstream regions with subregional preference. With three-dimensional reconstruction in the targeted areas, we found that synaptic degeneration was inconsistent with the accumulation of amyloid-ß plaques but was preferred in memory-related circuits, such as hippocampal formation and thalamus, but not in most hypothalamic nuclei in 8-month-old mice with five familial Alzheimer's disease mutations. Our pipeline provides a platform for generating a whole-brain atlas of cell-type-specific synaptic terminals in the physiological and pathological brain, which can provide an important resource for the study of the organizational logic of specific neural circuits and the circuitry changes in pathological conditions.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Neuronas , Sinapsis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Prosencéfalo Basal/ultraestructura , Modelos Animales de Enfermedad , Ratones , Mutación , Neuroimagen , Neuronas/ultraestructura , Parvalbúminas/análisis , Sinapsis/ultraestructura
8.
BMC Biol ; 22(1): 95, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679719

RESUMEN

BACKGROUND: The medial prefrontal cortex (mPFC) is involved in complex functions containing multiple types of neurons in distinct subregions with preferential roles. The pyramidal neurons had wide-range projections to cortical and subcortical regions with subregional preferences. Using a combination of viral tracing and fluorescence micro-optical sectioning tomography (fMOST) in transgenic mice, we systematically dissected the whole-brain connectomes of intratelencephalic (IT) and pyramidal tract (PT) neurons in four mPFC subregions. RESULTS: IT and PT neurons of the same subregion projected to different target areas while receiving inputs from similar upstream regions with quantitative differences. IT and PT neurons all project to the amygdala and basal forebrain, but their axons target different subregions. Compared to subregions in the prelimbic area (PL) which have more connections with sensorimotor-related regions, the infralimbic area (ILA) has stronger connections with limbic regions. The connection pattern of the mPFC subregions along the anterior-posterior axis showed a corresponding topological pattern with the isocortex and amygdala but an opposite orientation correspondence with the thalamus. CONCLUSIONS: By using transgenic mice and fMOST imaging, we obtained the subregional preference whole-brain connectomes of IT and pyramidal tract PT neurons in the mPFC four subregions. These results provide a comprehensive resource for directing research into the complex functions of the mPFC by offering anatomical dissections of the different subregions.


Asunto(s)
Conectoma , Ratones Transgénicos , Corteza Prefrontal , Células Piramidales , Animales , Corteza Prefrontal/fisiología , Corteza Prefrontal/citología , Células Piramidales/fisiología , Ratones , Masculino
9.
Mol Med ; 30(1): 95, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910244

RESUMEN

BACKGROUND: Ketone ß-hydroxybutyrate (BHB) has been reported to prevent tumor cell proliferation and improve drug resistance. However, the effectiveness of BHB in oxaliplatin (Oxa)-resistant colorectal cancer (CRC) and the underlying mechanism still require further proof. METHODS: CRC-Oxa-resistant strains were established by increasing concentrations of CRC cells to Oxa. CRC-Oxa cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) were checked following BHB intervention in vitro. The subcutaneous and metastasis models were established to assess the effects of BHB on the growth and metastasis of CRC-Oxa in vivo. Eight Oxa responders and seven nonresponders with CRC were enrolled in the study. Then, the serum BHB level and H3K79me, H3K27ac, H3K14ac, and H3K9me levels in tissues were detected. DOT1L (H3K79me methyltransferase) gene knockdown or GNE-049 (H3K27ac inhibitor) use was applied to analyze further whether BHB reversed CRC-Oxa resistance via H3K79 demethylation and/or H3K27 deacetylation in vivo and in vitro. RESULTS: Following BHB intervention based on Oxa, the proliferation, migration, invasion, and EMT of CRC-Oxa cells and the growth and metastasis of transplanted tumors in mice were suppressed. Clinical analysis revealed that the differential change in BHB level was associated with drug resistance and was decreased in drug-resistant patient serum. The H3K79me, H3K27ac, and H3K14ac expressions in CRC were negatively correlated with BHB. Furthermore, results indicated that H3K79me inhibition may lead to BHB target deletion, resulting in its inability to function. CONCLUSIONS: ß-hydroxybutyrate resensitized CRC cells to Oxa by suppressing H3K79 methylation in vitro and in vivo.


Asunto(s)
Ácido 3-Hidroxibutírico , Proliferación Celular , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Histonas , Oxaliplatino , Oxaliplatino/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Humanos , Ácido 3-Hidroxibutírico/farmacología , Animales , Ratones , Histonas/metabolismo , Metilación , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones Desnudos
10.
Nat Methods ; 18(3): 309-315, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33649587

RESUMEN

The microscopic visualization of large-scale three-dimensional (3D) samples by optical microscopy requires overcoming challenges in imaging quality and speed and in big data acquisition and management. We report a line-illumination modulation (LiMo) technique for imaging thick tissues with high throughput and low background. Combining LiMo with thin tissue sectioning, we further develop a high-definition fluorescent micro-optical sectioning tomography (HD-fMOST) method that features an average signal-to-noise ratio of 110, leading to substantial improvement in neuronal morphology reconstruction. We achieve a >30-fold lossless data compression at a voxel resolution of 0.32 × 0.32 × 1.00 µm3, enabling online data storage to a USB drive or in the cloud, and high-precision (95% accuracy) brain-wide 3D cell counting in real time. These results highlight the potential of HD-fMOST to facilitate large-scale acquisition and analysis of whole-brain high-resolution datasets.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Microscopía/métodos , Microtomía/métodos , Relación Señal-Ruido , Tomografía/métodos
11.
Pancreatology ; 24(1): 24-31, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38155082

RESUMEN

BACKGROUND: /Objectives: Persistent organ failure (OF) in severe acute pancreatitis (SAP) is caused by activation of cytokine cascades, resulting in inflammatory injury. Anti-inflammation may be helpful in OF remission in early SAP. To assess the efficacy of anti-inflammatory regimens for OF prevention and remission in patients with predicted SAP and display clinical doctors' acceptance of these strategies, we conducted this retrospective study in the real world. METHODS: Clinical data of patients with predicted SAP from 2010 to 2017 were retrospectively reviewed. Cases were divided into conventional support (C), C+ somatostatin/octreotide (C + S/O), and C + S/O + Cyclooxygenase-2-inhibitors (C + S/O + COX-2-I). The occurrence of SAP, OF, changes of proportion for three strategies, length of hospital stay, meperidine injection, and cytokine levels were compared. The constituent ratios of the three schemes over eight years were evaluated. RESULTS: A total of 580 cases (C = 124, C + S/O = 290, C + S/O + COX-2-I = 166) were included. The occurrences of SAP in the C + S/O (28.3 %) and C + S/O + COX-2-I (18.1 %) groups were significantly lower than that in C group (60.5 %, P < 0.001), mainly by reducing persistent respiratory failure (P < 0.001) and renal failure (P = 0.002). C + S/O and C + S/O + COX-2-I regimens significantly decreased new onset OF and enhanced OF amelioration within 48 h when compared with C treatment (P < 0.001) in patients with OF score <2 and ≥ 2 on admission, respectively. C + S/O and C + S/O + COX-2-I as compared with C group significantly decrease OF occurrences in a multivariate logistic regression analysis (P < 0.05). CONCLUSIONS: Somatostatin or its analogs and cyclooxygenase-2 inhibitors are promising for OF prevention and remission in patients with predicted SAP. The acceptance of combined strategies in the real world has increased, and the occurrence of SAP has decreased annually.


Asunto(s)
Pancreatitis , Humanos , Pancreatitis/complicaciones , Pancreatitis/tratamiento farmacológico , Pancreatitis/prevención & control , Octreótido/uso terapéutico , Inhibidores de la Ciclooxigenasa 2 , Estudios Retrospectivos , Enfermedad Aguda , Ciclooxigenasa 2/uso terapéutico , Somatostatina/uso terapéutico , Citocinas
12.
Circ Res ; 130(3): 352-365, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34995101

RESUMEN

BACKGROUND: Unraveling how new coronary arteries develop may provide critical information for establishing novel therapeutic approaches to treating ischemic cardiac diseases. There are 2 distinct coronary vascular populations derived from different origins in the developing heart. Understanding the formation of coronary arteries may provide insights into new ways of promoting coronary artery formation after myocardial infarction. METHODS: To understand how intramyocardial coronary arteries are generated to connect these 2 coronary vascular populations, we combined genetic lineage tracing, light sheet microscopy, fluorescence micro-optical sectioning tomography, and tissue-specific gene knockout approaches to understand their cellular and molecular mechanisms. RESULTS: We show that a subset of intramyocardial coronary arteries form by angiogenic extension of endocardium-derived vascular tunnels in the neonatal heart. Three-dimensional whole-mount fluorescence imaging showed that these endocardium-derived vascular tunnels or tubes adopt an arterial fate in neonates. Mechanistically, we implicate Mettl3 (methyltransferase-like protein 3) and Notch signaling in regulating endocardium-derived intramyocardial coronary artery formation. Functionally, these intramyocardial arteries persist into adulthood and play a protective role after myocardial infarction. CONCLUSIONS: A subset of intramyocardial coronary arteries form by extension of endocardium-derived vascular tunnels in the neonatal heart.


Asunto(s)
Vasos Coronarios/embriología , Endocardio/embriología , Animales , Vasos Coronarios/crecimiento & desarrollo , Vasos Coronarios/metabolismo , Endocardio/crecimiento & desarrollo , Endocardio/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Organogénesis
13.
Scand J Gastroenterol ; 59(2): 204-212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37933195

RESUMEN

Acute pancreatitis-induced splanchnic vein thrombosis (APISVT) is an important sequela complication of acute pancreatitis, which may cause poor prognosis, such as severe gastrointestinal hemorrhage, bowel ischemic necrosis and liver failure. However, its mechanism remains uncertain, and there is not a general consensus on the management. In this study, we reviewed the latest academic publications in APISVT, and discussed its pathogenesis, clinical presentation, adverse outcome and treatment, especially focused on the role of anticoagulant therapy. It was indicated that anticoagulation therapy can significantly elevate thrombus recanalization and reduce the incidence of complications and mortality with no increase of bleeding. Actually, as most of these studies were retrospective analyses and prospective studies included small samples, the conclusion remains controversial. Thus, well-designed randomized controlled trials are urged to verify the effectiveness and safety of anticoagulation therapy for APISVT.


Asunto(s)
Pancreatitis , Enfermedades Vasculares , Trombosis de la Vena , Humanos , Pancreatitis/complicaciones , Pancreatitis/terapia , Anticoagulantes/uso terapéutico , Estudios Retrospectivos , Estudios Prospectivos , Enfermedad Aguda , Vena Porta , Trombosis de la Vena/etiología , Trombosis de la Vena/complicaciones , Hemorragia Gastrointestinal/complicaciones , Circulación Esplácnica
14.
J Immunol ; 209(2): 280-287, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35777850

RESUMEN

Hand, foot, and mouth disease (HFMD), which is mainly caused by coxsackievirus A16 (CVA16) or enterovirus A71 (EV-A71), poses a serious threat to children's health. However, the long-term dynamics of the neutralizing Ab (NAb) response and ideal paired-serum sampling time for serological diagnosis of CVA16-infected HFMD patients were unclear. In this study, 336 CVA16 and 253 EV-A71 PCR-positive HFMD inpatients were enrolled and provided 452 and 495 sera, respectively, for NAb detection. Random-intercept modeling with B-spline was conducted to characterize NAb response kinetics. The NAb titer of CVA16 infection patients was estimated to increase from negative (2.1, 95% confidence interval [CI]: 1.4-3.3) on the day of onset to a peak of 304.8 (95% CI: 233.4-398.3) on day 21 and then remained >64 until 26 mo after onset. However, the NAb response level of EV-A71-infected HFMD patients was much higher than that of CVA16-infected HFMD patients throughout. The geometric mean titer was significantly higher in severe EV-A71-infected patients than in mild patients, with a 2.0-fold (95% CI: 1.4-3.2) increase. When a 4-fold rise in titer was used as the criterion for serological diagnosis of CVA16 and EV-A71 infection, acute-phase serum needs to be collected at 0-5 d, and the corresponding convalescent serum should be respectively collected at 17.4 (95% CI: 9.6-27.4) and 24.4 d (95% CI: 15.3-38.3) after onset, respectively. In conclusion, both CVA16 and EV-A71 infection induce a persistent humoral immune response but have different NAb response levels and paired-serum sampling times for serological diagnosis. Clinical severity can affect the anti-EV-A71 NAb response.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Anticuerpos Neutralizantes , Niño , China/epidemiología , Estudios de Cohortes , Enfermedad de Boca, Mano y Pie/diagnóstico , Humanos , Lactante , Estudios Longitudinales
15.
J Nanobiotechnology ; 22(1): 278, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783363

RESUMEN

Amyloid-ß (Aß) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aß aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aß42, we developed an Aß42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aß-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aß42 misfolding, accelerating Aß42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aß clearance exhibited by this Aß42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Cerio , Nanocompuestos , Especies Reactivas de Oxígeno , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Péptidos beta-Amiloides/metabolismo , Nanocompuestos/química , Ratones , Cerio/química , Cerio/farmacología , Ratones Transgénicos , Dióxido de Silicio/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Humanos , Encéfalo/metabolismo , Nanopartículas/química , Glicoproteínas/química , Glicoproteínas/farmacología , Glicoproteínas/metabolismo , Modelos Animales de Enfermedad , Proteínas Virales
16.
Nucleic Acids Res ; 50(D1): D1156-D1163, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34751388

RESUMEN

The Chemical Effects in Biological Systems database (CEBS) contains extensive toxicology study results and metadata from the Division of the National Toxicology Program (NTP) and other studies of environmental health interest. This resource grants public access to search and collate data from over 10 250 studies for 12 750 test articles (chemicals, environmental agents). CEBS has made considerable strides over the last 5 years to integrate growing internal data repositories into data warehouses and data marts to better serve the public with high quality curated datasets. This effort includes harmonizing legacy terms and metadata to current standards, mapping test articles to external identifiers, and aligning terms to OBO (Open Biological and Biomedical Ontology) Foundry ontologies. The data are made available through the CEBS Homepage (https://cebs.niehs.nih.gov/cebs/), guided search applications, flat files on FTP (file transfer protocol), and APIs (application programming interface) for user access and to provide a bridge for computational tools. The user interface is intuitive with a single search bar to query keywords related to study metadata, publications, and data availability. Results are consolidated to single pages for each test article with NTP conclusions, publications, individual studies, data collections, and links to related test articles and projects available together.


Asunto(s)
Bases de Datos Factuales , Biología de Sistemas/clasificación , Toxicogenética/clasificación , Toxicología/clasificación , Sistemas de Administración de Bases de Datos , Humanos , Proteómica/clasificación
17.
Phytother Res ; 38(2): 880-911, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38088265

RESUMEN

Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.


Asunto(s)
Flavonas , Neoplasias , Humanos , Luteolina/farmacología , Luteolina/uso terapéutico , Preparaciones Farmacéuticas , Flavonas/farmacología , Flavonas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Disponibilidad Biológica
18.
Eur Heart J ; 44(29): 2746-2759, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37377116

RESUMEN

AIMS: The mechanisms underlying ageing-induced vascular remodelling remain unclear. This study investigates the role and underlying mechanisms of the cytoplasmic deacetylase sirtuin 2 (SIRT2) in ageing-induced vascular remodelling. METHODS AND RESULTS: Transcriptome and quantitative real-time PCR data were used to analyse sirtuin expression. Young and old wild-type and Sirt2 knockout mice were used to explore vascular function and pathological remodelling. RNA-seq, histochemical staining, and biochemical assays were used to evaluate the effects of Sirt2 knockout on the vascular transcriptome and pathological remodelling and explore the underlying biochemical mechanisms. Among the sirtuins, SIRT2 had the highest levels in human and mouse aortas. Sirtuin 2 activity was reduced in aged aortas, and loss of SIRT2 accelerated vascular ageing. In old mice, SIRT2 deficiency aggravated ageing-induced arterial stiffness and constriction-relaxation dysfunction, accompanied by aortic remodelling (thickened vascular medial layers, breakage of elastin fibres, collagen deposition, and inflammation). Transcriptome and biochemical analyses revealed that the ageing-controlling protein p66Shc and metabolism of mitochondrial reactive oxygen species (mROS) contributed to SIRT2 function in vascular ageing. Sirtuin 2 repressed p66Shc activation and mROS production by deacetylating p66Shc at lysine 81. Elimination of reactive oxygen species by MnTBAP repressed the SIRT2 deficiency-mediated aggravation of vascular remodelling and dysfunction in angiotensin II-challenged and aged mice. The SIRT2 coexpression module in aortas was reduced with ageing across species and was a significant predictor of age-related aortic diseases in humans. CONCLUSION: The deacetylase SIRT2 is a response to ageing that delays vascular ageing, and the cytoplasm-mitochondria axis (SIRT2-p66Shc-mROS) is important for vascular ageing. Therefore, SIRT2 may serve as a potential therapeutic target for vascular rejuvenation.


Asunto(s)
Sirtuina 2 , Remodelación Vascular , Ratones , Humanos , Animales , Anciano , Sirtuina 2/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento , Ratones Noqueados
19.
BMC Biol ; 21(1): 135, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280580

RESUMEN

BACKGROUND: Based on their anatomical location, rostral projections of nuclei are classified as ascending circuits, while caudal projections are classified as descending circuits. Upper brainstem neurons participate in complex information processing and specific sub-populations preferentially project to participating ascending or descending circuits. Cholinergic neurons in the upper brainstem have extensive collateralizations in both ascending and descending circuits; however, their single-cell projection patterns remain unclear because of the lack of comprehensive characterization of individual neurons. RESULTS: By combining fluorescent micro-optical sectional tomography with sparse labeling, we acquired a high-resolution whole-brain dataset of pontine-tegmental cholinergic neurons (PTCNs) and reconstructed their detailed morphology using semi-automatic reconstruction methods. As the main source of acetylcholine in some subcortical areas, individual PTCNs had abundant axons with lengths up to 60 cm and 5000 terminals and innervated multiple brain regions from the spinal cord to the cortex in both hemispheres. Based on various collaterals in the ascending and descending circuits, individual PTCNs were grouped into four subtypes. The morphology of cholinergic neurons in the pedunculopontine nucleus was more divergent, whereas the laterodorsal tegmental nucleus neurons contained richer axonal branches and dendrites. In the ascending circuits, individual PTCNs innervated the thalamus in three different patterns and projected to the cortex via two separate pathways. Moreover, PTCNs targeting the ventral tegmental area and substantia nigra had abundant collaterals in the pontine reticular nuclei, and these two circuits contributed oppositely to locomotion. CONCLUSIONS: Our results suggest that individual PTCNs have abundant axons, and most project to various collaterals in the ascending and descending circuits simultaneously. They target regions with multiple patterns, such as the thalamus and cortex. These results provide a detailed organizational characterization of cholinergic neurons to understand the connexional logic of the upper brainstem.


Asunto(s)
Axones , Tronco Encefálico , Tronco Encefálico/fisiología , Axones/fisiología , Puente/anatomía & histología , Puente/fisiología , Encéfalo , Neuronas Colinérgicas
20.
Environ Toxicol ; 39(5): 2732-2740, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251951

RESUMEN

BACKGROUND: Cervical cancer, a life-threatening disease, is the seventh most commonly detected cancer among women throughout the world. The present study investigated the effect of tretinoin on cervical cancer growth and metastasis in vitro and in vivo in the mice model. MATERIALS AND METHODS: Cell Counting Kit-8, clonogenic survival, and transwell chamber assays were used for determination cells proliferation, colony formation, and invasiveness. Western blotting assay was used for assessment of protein expression whereas AutoDock Vina and Discovery studio software for in silico studies. RESULTS: Tretinoin treatment significantly (p < .05) reduced the proliferation of HT-3 and Caski cells in concentration-based manner. Incubation with tretinoin caused a significant decrease in clonogenic survival of HT-3 and Caski cells compared with the control cultures. The invasive potential of HT-3 cells was decreased to 18%, whereas that of Caski cells to 21% on treatment with 8 µM concentration of tretinoin. In HT-3 cells, tretinoin treatment led to a prominent reduction in p-focal adhesion kinase (FAK), matrix metalloproteinases (MMP)-2, and MMP-9 expression in HT-3 cells. Treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. The metastasis of tumor in model cervical cancer mice group was effectively inhibited in spleen, intestines, and peritoneal cavity. In silico studies showed that tretinoin interacts with alanine, proline, isoleucine, and glycine amino acid residues of FAK protein to block its activation. The 2-dimensional diagram of interaction of tretinoin with FAK protein revealed that tretinoin binds to alanine and glycine amino acids through conventional hydrogen bonding. CONCLUSION: In summary, tretinoin suppressed the proliferation, colony formation, and invasiveness of cervical cancer cells in vitro. It decreased the expression of activated focal adhesion kinase, MMP-2, and MMP-9 in HT-3 cells in dose-dependent manner. In silico studies showed that tretinoin interacts with alanine and glycine amino acids through conventional hydrogen bonding. In vivo data demonstrated that treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. Therefore, tretinoin can be developed as an effective therapeutic agent for cervical cancer treatment.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Animales , Ratones , Neoplasias del Cuello Uterino/metabolismo , Tretinoina/farmacología , Tretinoina/uso terapéutico , Línea Celular Tumoral , Regulación hacia Abajo , Metaloproteinasa 9 de la Matriz/metabolismo , Proliferación Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Alanina/metabolismo , Alanina/farmacología , Alanina/uso terapéutico , Glicina/metabolismo , Glicina/farmacología , Glicina/uso terapéutico , Aminoácidos/metabolismo , Aminoácidos/farmacología , Aminoácidos/uso terapéutico , Invasividad Neoplásica , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA