Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2405018, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246256

RESUMEN

Magnetic-responsive surfactants are considered promising smart lubricating materials due to their significant stimulation response to applied magnetic fields. In this study, four magneto-responsive surfactants are successfully fabricated and encapsulated on the surface of molybdenum disulfide nanosheets (MoS2@C18H37N+(CH3)3[XCl3Br]-, X = Fe, Ce, Gd, and Ho) as base-oil components using electrostatic self-assembly, thereby constructing a multi-functional magnetic lubrication system (MoS2@STAX). Magnetorheological measurements confirm the remarkable responsiveness of MoS2@STACe lubricants at high shear rates and applied magnetic fields, which is further corroborated by the constant proximity of the magnet. The formation of dense carbon and tribo-chemical films between the friction interfaces at elevated temperatures is the primary factor contributing to the significant reduction in frictional wear. Notably, the magnetic lubricant demonstrates a pronounced response behavior when subjected to an applied magnetic field in the ceramic tribopair, even at lower magnetic fields. This work presents concepts for the development of high-temperature resistant and tunable lubrication additives by designing the material structure and controlling the magnetic stimulation.

2.
ACS Appl Mater Interfaces ; 16(21): 27339-27351, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38749766

RESUMEN

The droplet-based nanogenerator (DNG) is a highly promising technology for harvesting high-entropy water energy in the era of the Internet of Things. Yet, despite the exciting progress made in recent years, challenges have emerged unexpectedly for the AC-type DNG-based energy system as it transitions from laboratory demonstrations to real-world applications. In this work, we propose a high-performance DNG system based on the total-current nanogenerator concept to address these challenges. This system utilizes the water-charge-shuttle architecture for easy scale-up, employs the field effect to boost charge density of the triboelectric layer, adopts an on-solar-panel design to improve compatibility with solar energy, and is equipped with a novel DC-DC buck converter as power management circuit. These features allow the proposed system to overcome the existing bottlenecks of DNG and empower the system with superior performances compared with previous ones. Notably, with the core architecture measuring only 15 cm × 12.5 cm × 0.3 cm in physical dimensions, this system reaches a record-high open-circuit voltage of 4200 V, capable of illuminating 1440 LEDs, and can charge a 4.7 mF capacitor to 4.5 V in less than 24 min. In addition, the practical potential of the proposed DNG system is further demonstrated through a self-powered, smart greenhouse application scenario. These demonstrations include the continuous operation of a thermohygrometer, the operation of a Bluetooth plant monitor, and the all-weather energy harvesting capability. This work will provide valuable inspiration and guidance for the systematic design of next-generation DNG to unlock the sustainable potential of distributed water energy for real-world applications.

3.
RSC Adv ; 8(9): 4595-4603, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35539532

RESUMEN

Red phosphorus (P) was covalently attached to graphene nanosheets (Gr) using high-energy ball-milling under a nitrogen atmosphere. Benefiting from the formation of phosphate and P-O-C bonds on graphene surfaces, the resulting phosphorus-graphene (P-Gr) hybrids exhibited excellent dispersion stability in polyalkylene glycol (PAG) base oil compared with graphene. Moreover, tribological measurement indicated that addition of 1.0 wt% P-Gr into PAG resulted in significant reduction in friction coefficient (up to about 12%) and wear volume (up to about 98%) for steel/steel contact at 100 °C, which was likely due to the formation of a boundary lubrication film on the sliding surfaces during the friction and wear processes. XPS analysis demonstrated that the tribofilm is composed of FeO, Fe3O4, FeOOH, FePO4, and the compounds containing C-O-C and P-O bonds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA