Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nano Lett ; 23(3): 1044-1051, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36655867

RESUMEN

Electrospun fibers have received wide attention in various fields ranging from the environment and healthcare to energy. However, nearly all electrospun fibers suffer from a pseudonanoscale diameter, resulting in fabricated membranes with a large pore size and limited separation performance. Herein, we report a novel strategy based on manipulating the equilibrium of stretch deformation and phase separation of electrospun jets to develop true-nanoscale fibers for effective selective separation. The obtained fibers present true-nanoscale diameters (∼67 nm), 1 order of magnitude less than those of common electrospun fibers, which endows the resultant membranes with remarkable nanostructural characteristics and separation performances in areas of protective textiles (waterproofness of 113 kPa and breathability of 4.1 kg m-2 d-1), air filtration (efficiency of 99.3% and pressure drop of 127.4 Pa), and water purification (flux of 81.5 kg m-2 h-1 and salt rejection of 99.94%). This work may shed light on developing high-performance separation materials for various applications.

2.
Nano Lett ; 23(22): 10579-10586, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37934045

RESUMEN

Two-dimensional (2D) nanomaterials have been widely applied as building blocks of nanoporous materials for high-precision separations. However, most existing 2D nanomaterials suffer from poor continuity and a lack of interior linking, resulting in deteriorated performance when assembled into macroscopic bulk structures. Here, a unique superspreading-based phase inversion technique is proposed to directly construct 2D nanofibrous networks (NFNs) from a polymer solution. By tailoring capillary behavior, polymer solution droplets evolve into ultrathin liquid films through superspreading; manipulating phase instability, subsequently, enables the liquid film to phase invert into continuous nanostructured networks. The assembled single-layered NFNs possess integrated structural superiorities of 1D nanoscale fiber diameter (∼40 nm) and 2D lateral infinity, exhibiting a weblike nanoarchitecture with extremely small through-pores (∼100 nm). Our NFNs show remarkable performances in air filtration (PM0.3 removal) and water purification (microfiltration level). This creation of such attractive 2D fibrous nanomaterials can pave the way for versatile high-performance separation applications.

3.
Nano Lett ; 23(23): 11337-11344, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37991483

RESUMEN

Smart membranes with protection and thermal-wet comfort are highly demanded in various fields. Nevertheless, the existing membranes suffer from a tradeoff dilemma of liquid resistance and moisture permeability, as well as poor thermoregulating ability. Herein, a novel strategy, based on the synchronous occurrence of humidity-induced electrospinning and electromeshing, is developed to synthesize a dual-network structured nanofiber/mesh for personal comfort management. Manipulating the ejection, deformation, and phase separation of spinning jets and charged droplets enables the creation of nanofibrous membranes composed of radiative cooling nanofibers and 2D nanostructured meshworks. With a combination of a true-nanoscale fiber (∼70 nm) in 2D meshworks, a small pore size (0.84 µm), and a superhydrophobic surface (151.9°), the smart membranes present high liquid repellency (95.6 kPa), improved breathability (4.05 kg m-2 d-1), and remarkable cooling performance (7.9 °C cooler than commercial cotton fabrics). This strategy opens up a pathway to the design of advanced smart textiles for personal protection.

4.
Small ; 19(2): e2205067, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403221

RESUMEN

Waterproof and breathable membranes that prevent liquid water penetration, while allowing air and moisture transmission, have attracted significant attention for various applications. Electrospun nanofiber materials with adjustable pore structures, easily tunable wettability, and good pore connectivity, have shown significant potential for constructing waterproof and breathable membranes. Herein, a systematic overview of the recent progress in the design, fabrication, and application of waterproof and breathable nanofibrous membranes is provided. The various strategies for fabricating the membranes mainly including one-step electrospinning and post-treatment of nanofibers are given as a starting point for the discussion. The different design concepts and structural characteristics of each type of waterproof and breathable membrane are comprehensively analyzed. Then, some representative applications of the membranes are highlighted, involving personal protection, desalination, medical dressing, and electronics. Finally, the challenges and future perspectives associated with waterproof and breathable nanofibrous membranes are presented.


Asunto(s)
Membranas Artificiales , Nanofibras , Propiedades de Superficie , Vendajes , Nanofibras/química , Agua/química , Humectabilidad , Equipo de Protección Personal , Electrónica , Ensayo de Materiales
5.
Phytother Res ; 37(2): 645-657, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36218239

RESUMEN

Diabetic peripheral neuropathy (DPN) is a chronic complication associated with nerve dysfunction and uncontrolled hyperglycemia. Unfortunately, due to its complicated etiology, there has been no successful therapy for DPN. Our research recently revealed that jatrorrhizine (JAT), one of the active constituents of Rhizoma Coptidis, remarkably ameliorated DPN. This work highlighted the potential mechanism through which JAT relieves DPN using db/db mice. The results indicated that JAT treatment significantly decreased the threshold for thermal and mechanical stimuli and increased nerve conduction velocity. Histopathological analysis revealed that JAT significantly increased the number of sciatic nerve fibers and axons, myelin thickness, and axonal diameters. Additionally, JAT markedly elevated the expression of myelination-associated proteins (MBP, MPZ, and Pmp22). The screening of histone deacetylases (HDAC) determined that histone deacetylase 3 (HDAC3) is an excellent target for JAT-induced myelination enhancement. Liquid chromatography-mass spectrometry-(MS)/MS and coimmunoprecipitation analyses further confirmed that HDAC3 antagonizes the NRG1-ErbB2-PI3K-AKT signaling axis by interacting with Atxn2l to augment SCs myelination. Thus, JAT ameliorates SCs myelination in DPN mice via inhibiting the recruitment of Atxn2l by HDAC3 to regulate the NRG1-ErbB2-PI3K-AKT pathway.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Células de Schwann , Histona Desacetilasas/metabolismo , Nervio Ciático , Diabetes Mellitus/patología , Neurregulina-1/metabolismo
6.
Bioorg Chem ; 127: 105939, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35700569

RESUMEN

Thirty-three novel paeonol etherized aryl urea derivatives (PEUs) were synthesized via a bromination-Williamson Ether Synthesis-deprotection-nucleophilic addition reaction sequence. The structures of PEUs were characterized by LC-MS, HRMS, 1H NMR and 13C NMR spectra. The levels of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages were initially employed to evaluate the anti-inflammatory effects of all compounds. Remarkably, b16 exhibited a good anti-inflammatory activity at 2.5 µm which is the same as the potency of paeonol at 20 µm. The results of mechanism research displayed that the anti-inflammatory effect of b16 was ascribed to the inhibition of the TLR4/MyD88 signaling pathway and inflammatory factors. Additionally, b16 distinctly reduced the generation of free radicals in macrophages and strikingly increased the mitochondrial membrane potential. According to the structure-activity relationships (SAR) of PEUs, the incorporation of halogens on the benzene ring and the hydrogen of phenol hydroxyl substituted by aryl urea, were beneficial to enhance the anti-inflammatory activities. Molecular docking results illustrated that the binding ability of b16 to TLR4 was stronger than that of paeonol. In summary, the novel aryl urea-derivied paeonol b16 could be a new promising candidate for the treatment of inflammation-related diseases.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 4 , Acetofenonas , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , Ratones , Simulación del Acoplamiento Molecular , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Células RAW 264.7 , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Urea/farmacología
7.
J Oral Maxillofac Surg ; 78(10): 1780.e1-1780.e14, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32615095

RESUMEN

PURPOSE: PER2 gene expression is downregulated in oral squamous cell carcinoma (OSCC) and may have a pivotal role in tumor suppression. However, the biological function and mechanism of action of PER2 in OSCC remain unclear. In this study, the biological functions and anticancer mechanisms of PER2 in OSCC were investigated. MATERIALS AND METHODS: Both stably overexpressed and silenced PER2 OSCC cells were established as an experimental group; empty vector lentivirus and scramble short hairpin RNA lentivirus transfected-cells, as negative control groups; and untreated OSCC cells, as a blank group. Cell proliferation, apoptosis, and glycolysis potential assays were conducted. In addition, the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), phosphorylation of protein kinase B, hexokinase 2 (HK2), pyruvate kinase M (PKM2), and lactate dehydrogenase A (LDHA) was quantified by real-time quantitative polymerase chain reaction and Western blotting. Rescue experiments were performed by the addition of AKT activators in the overexpressed cell line and by the addition of glycolysis inhibitor in the silenced cell line. These findings were verified in vivo using stably transfected OSCC cells overexpressing PER2 implanted in nude mice. RESULTS: PER2 overexpression significantly inhibited OSCC cell proliferation and glycolysis, promoted cell apoptosis, and reduced the expression of PI3K, phosphorylation of protein kinase B, HK2, PKM2, and LDHA. The converse was observed in PER2-silenced OSCC cells. After the addition of AKT activator to cultures of PER2-overexpressed OSCC cells, reduced glucose uptake, lactic acid production, and cell proliferation, combined with increased apoptosis, were substantially reversed. In addition, after the addition of HK2 inhibitor to PER2-silenced OSCC cells to inhibit glycolysis, the reduction in apoptosis and increased proliferation were significantly countermanded. Tumorigenesis experiments in vivo also confirmed that PER2 overexpression suppressed OSCC growth and decreased the expression of HK2, PKM2, and LDHA. CONCLUSIONS: PER2 heightened glycolysis via the PI3K/AKT pathway, heightened cell proliferation and inhibited apoptosis via glycolysis, thereby promoting the development of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Animales , Apoptosis , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Glucólisis , Ratones , Ratones Desnudos , Neoplasias de la Boca/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
8.
Bioorg Med Chem Lett ; 26(21): 5218-5221, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27712938

RESUMEN

A new series of paeonol alkyl ether analogues were synthesized and confirmed with IR, 1H NMR, 13C NMR and HRMS spectra. They have shown anti-inflammatory activities by scavenging mediator of free radicals and inhibiting lipid mediator of inflammation on complete Freund's adjuvant (CFA) induced arthritis in mice. The in vitro and in vivo scavenging ability of free radicals was determined by using chemical analysis and commercial assay kits, respectively. The in vivo inhibiting lipid mediator of inflammation was examined by ELISA. Our results indicated that the substitution of the hydrogen in hydroxyl group at C2 position of paeonol 1 by short carbon chain, in the presence or absence of bromo atom at C5 position, decreased its scavenging ability on radicals (3a or 4a vs 1), while the long alkyl substitution (Cn>14) increased the activity. Compared with 3a or 4a, scavenging abilities of 3a-h or 4a-h gradually increased following the length elongation of alkyl carbon chain. Compounds 3h and 4h showed great scavenging ability on OH, O2-, DPPH, ATBS+ and MDA, and good promotion on T-AOC and SOD. The results of the in vivo inhibiting lipid mediator of inflammation also demonstrated that 3h, 4h exhibited substantial inhibition on enzyme activity of COX-2, PGE2. Therefore, 3h and 4h have great potential to be the novel anti-inflammatory drug candidates for the therapy of arthritis.


Asunto(s)
Acetofenonas/síntesis química , Acetofenonas/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Adyuvante de Freund/administración & dosificación , Acetofenonas/química , Animales , Ciclooxigenasa 2/metabolismo , Evaluación Preclínica de Medicamentos , Ratones , Análisis Espectral/métodos
9.
Carbohydr Polym ; 333: 121963, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494220

RESUMEN

PSCP, a novel water-soluble polysaccharide, was extracted from the root of Saussurea costus and subsequently purified using DEAE-52 cellulose and Sephadax G-50 columns. The elucidation of its structure involved various techniques including HPGPC, FT-IR, HPLC-ELSD, GC-MS, NMR, AFM, and SEM. The results show that PSCP was a homogeneous heteropoly saccharide having molecular weight of 4131 Da and mainly composed of 1-α-D-Glcp-(-2-ß-D-Fruf-1-)23-2-ß-D-Fruf. The anti-psoriasis activity of PSCP was evaluated in imiquimod-induced psoriasis in Balb/C mice. This study revealed that treatment with PSCP resulted in a significant improvement in the pathological morphology of the skin and a reduction in the PASI score. Analysis of liver RNA-Seq data indicated that the MAPK signaling pathway may play a crucial role in the ability of PSCP to ameliorate psoriasis. PSCP was found to effectively inhibit the phosphorylation of JNK, ERK, and p38, as well as down-regulate the expression of the transcription factor AP-1 (c-fos and c-jun) in the nucleus, thereby reducing the expression of inflammatory factors. These findings suggest that PSCP holds promise as a novel therapeutic approach for the treatment of psoriasis.


Asunto(s)
Compuestos Organofosforados , Psoriasis , Saussurea , Animales , Ratones , Espectroscopía Infrarroja por Transformada de Fourier , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química
10.
ACS Biomater Sci Eng ; 9(3): 1437-1449, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36795746

RESUMEN

In the tumor microenvironment (TME), the extracellular matrix (ECM) produced by cancer-associated fibroblasts (CAFs) forms a dense barrier that prevents nanodrugs from penetrating into deep tumor sites, leading to unsatisfactory therapeutic effects. Recently, it has been found that ECM depletion and using small-sized nanoparticles are effective strategies. Herein, we reported a detachable dual-targeting nanoparticle (HA-DOX@GNPs-Met@HFn) based on reducing ECM for enhancing penetration. When these nanoparticles reached the tumor site, the nanoparticles were divided into two parts in response to matrix metalloproteinase-2 overexpressed in TME, causing a decrease in the nanoparticle size from about 124 to 36 nm. One part was Met@HFn, which was detached from the surface of gelatin nanoparticles (GNPs), which effectively targeted tumor cells and released metformin (Met) under acidic conditions. Then, Met downregulated the expression of the transforming growth factor ß by the adenosine monophosphate-activated protein kinase pathway to inhibit the activity of CAFs, thereby suppressing the production of ECM including α-smooth muscle actin and collagen I. The other was the small-sized hyaluronic acid-modified doxorubicin prodrug with autonomous targeting ability, which was gradually released from GNPs and internalized into deeper tumor cells. Intracellular hyaluronidases triggered the release of doxorubicin (DOX), which killed tumor cells by inhibiting DNA synthesis. The combination of size transformation and ECM depletion enhanced the penetration and accumulation of DOX in solid tumors. Therefore, the tumor chemotherapy effect was greatly improved.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Doxorrubicina/farmacología , Neoplasias/tratamiento farmacológico , Matriz Extracelular/metabolismo , Gelatina , Microambiente Tumoral
11.
Adv Mater ; 35(51): e2305606, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37540196

RESUMEN

Skin-like functional membranes with liquid resistance and moisture permeability are in growing demand in various applications. However, the membranes have been facing a long-term dilemma in balancing waterproofness and breathability, as well as resisting internal liquid sweat transport, resulting in poor thermal-wet comfort. Herein, a novel electromeshing technique, based on manipulating the ejection and phase separation of charged liquids, is developed to create triboelectric nanostructured nano-mesh consisting of hydrophobic ferroelectric nanofiber/meshes and hydrophilic nanofiber/meshes. By combining the true nanoscale diameter (≈22 nm), small pore size, and high porosity, high waterproofness (129 kPa) and breathability (3736 g m-2 per day) for the membranes are achieved. Moreover, the membranes can break large water clusters into small water molecules to promote sweat absorption and release by coupling hydrophilic wicking and triboelectric field polarization, exhibiting a satisfactory water evaporation rate (0.64 g h-1 ) and thermal-wet comfort (0.7 °C cooler than the cutting-edge poly(tetrafluoroethylene) protective membranes). This work may shed new light on the design and development of advanced protective textiles.

12.
Chem Biol Interact ; 374: 110408, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822301

RESUMEN

The increasing incidence of colorectal cancer (CRC) has become a major global public health burden. The natural drug Berberine (BBR) has shown potential in preventing CRC, and IGF2 mRNA binding protein 3 (IGF2BP3) may be a target of BBR. This study aims to investigate the mechanisms of BBR acting on IGF2BP3 to improve CRC. The results showed that IGF2BP3 played an important role in the development of CRC. BBR down-regulated IGF2BP3 expression and inhibited CRC growth in mice. Cell thermodynamic stability analysis (CETSA) and drug affinity responsive target stability (DARTS) analysis showed BBR may bind to IGF2BP3. BBR may induce structural changes in IGF2BP3 and decrease its protein stability in cytoplasm. The results from Co-Immunoprecipitation (Co-IP) suggested that BBR promoted the ubiquitination of IGF2BP3 by tripartite motif-containing protein 21 (TRIM21). Through RNA binding protein Immunoprecipitation (RIP) assay, it was found BBR inhibited the stabilization of CDK4/CCND1 mRNA by IGF2BP3 and promoted G1/S phase arrest in CRC cells. Overexpression of IGF2BP3 in vitro and in vivo attenuated the inhibition of CRC growth by BBR. This work demonstrated the potential of BBR targeting to IGF2BP3 in improving CRC and provided a new strategy for clinical treatment on CRC as well as novel anticancer drug design based on IGF2BP3 and TRIM21.


Asunto(s)
Berberina , Neoplasias Colorrectales , Animales , Ratones , Proliferación Celular , Berberina/farmacología , Berberina/uso terapéutico , Línea Celular Tumoral , Fase S , Ubiquitinación , Neoplasias Colorrectales/metabolismo , ARN Mensajero/metabolismo
13.
Biomater Sci ; 10(14): 4008-4022, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35726640

RESUMEN

Although tumor starvation therapy has been proven to be an excellent method for tumor therapy, its efficiency may be weakened by autophagy, a self-protection mechanism exerted by tumors under starvation stress. Interestingly, over-activated autophagy not only improves the efficacy of starvation therapy, but also induces autophagic death. Herein, we report cascade nanozymes for enhanced starvation therapy by inducing over-activated autophagy. First, glucose oxidase (GOx) modified metal-organic frameworks (NH2-MIL88, MOF) were constructed (MOF-GOx). After loading with curcumin (Cur), Cur@MOF-GOx was further decorated with tumor-targeting hyaluronic acid (HA) to obtain Cur@MOF-GOx/HA nanozymes. GOx can catalyze glucose into H2O2 and gluconic acid, which not only leads to tumor starvation, but also provides reactants for the Fenton reaction mediated by the MOF to generate hydroxyl radicals (˙OH) for chemo-dynamic therapy. Most importantly, protective autophagy caused by tumor starvation can be over-activated by Cur to convert autophagy from pro-survival to pro-death, realizing augmented anticancer therapy efficacy. With these cascade reactions, the synergistic action of starvation, autophagy and chemo-dynamic therapy was realized. Generally, the introduction of Cur@MOF-GOx/HA into tumor cells leads to a "butterfly effect", which induces enhanced starvation therapy through subsequent autophagic cell death to completely break the self-protective mechanism of cancer cells, and generate ˙OH for chemo-dynamic therapy. Precise design allows for the use of cascade nanozymes to realize efficient cancer treatment and restrain metastasis.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Autofagia , Línea Celular Tumoral , Glucosa Oxidasa/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Estructuras Metalorgánicas/metabolismo , Estructuras Metalorgánicas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología
14.
ACS Appl Mater Interfaces ; 14(30): 35287-35296, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35866994

RESUMEN

Seawater desalination is a promising and sustainable solution to alleviate freshwater scarcity; however, most existing desalination membranes suffer from poor channel interconnectivity and toxic solvent processing and encounter a tradeoff dilemma of salt rejection and water flux. Herein, we report a unique and facile one-step green solvent/nonsolvent spinning methodology to assemble environmentally friendly polyamide nanofiber membranes with a precisely designed interconnective/stable channel structure and surface anti-wettability for seawater desalination. Direct electrospinning without any post-treatments via in situ introduction of fluorinated chemicals enables highly interconnective amphiphobic channels within polyamide membranes, and the incorporation of nonsolvent (diacetone alcohol) into polyamide/solvent (ethanol) spinning solutions endows the green alcohol-based polyamide membranes with a stable bonding structure and small pore size. The resultant green solvent/nonsolvent-spun polyamide nanofiber membranes show impressive liquid entry pressure (120.5 kPa) and vapor permeation (12.5 kg m-2 d-1), achieving robust seawater desalination performance with a salt rejection of 99.97% and permeate flux of 47.4 kg m-2 h-1. The facile one-step solvent/nonsolvent spinning strategy, highly interconnective amphiphobic channels, and green solvent-based environmental friendliness in this work can open opportunities for future polyamide membranes for practical applications in water purification.

15.
ACS Nano ; 16(1): 119-128, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34870426

RESUMEN

Currently, the quest for highly transparent and flexible fibrous membranes with robust mechanical characteristics, high breathability, and good filtration performance is rapidly rising because of their potential use in the fields of electronics, energy, environment, medical, and health. However, it is still an extremely challenging task to realize transparent fibrous membranes due to serious surface light reflection and internal light scattering. Here, we report the design and development of a simple and effective topological structure to create porous, breathable, and high visible light transmitting fibrous membranes (HLTFMs). The resultant HLTFMs exhibit good optical performance (up to 90% transmittance) and high porosities (>80%). The formation of such useful structure with high light transmittance has been revealed by electric field simulation, and the mechanism of fibrous membrane structure to achieve high light transmittance has been proposed. Moreover, transparent masks have been prepared to evaluate the filtration performance and analyze their feasibility to meet requirement of facial recognition systems. The prepared masks display high transparency (>80%), low pressure drop (<100 Pa) and high filtration efficiency (>90%). Furthermore, the person wearing this mask can be successfully identified by facial recognition systems. Therefore, this work provides an idea for the development of transparent, breathable, and high-performance fibrous membranes.

16.
Phytomedicine ; 87: 153582, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34091150

RESUMEN

BACKGROUND AND PURPOSE: Diosmetin (Dios), a flavonoid compound with multiple pharmacological activities. However, fewer studies have reported its effects on type 2 diabetic mellitus (T2DM). Here, we address the effect of Dios on glucose metabolism and gut microbiota in KK-Ay diabetic mice. METHOD: Wild type C57BL/6 J mice or diabetic KK-Ay mice were treated with vehicle or Dios for one month. The ELISA kit and fluorescence microscope system were respectively employed to the evaluation of serum biochemical indicators and histopathological changes. Liver RNA-Seq and western blot were used to reveal the key signaling pathway. The effects of Dios on gut microbiota was investigated by the 16S rRNA gene sequencing, as well as the relationship between Dios and C. glu on glucose metabolism was explored with the C. glu transplantation. RESULTS: Dios treatment significantly decreased blood glucose and increased serum insulin concentrations. RNA-Seq analysis found that the underlying action mechanism of Dios on T2DM was via modulating glucose metabolism, which was proved by up-regulating IRS/PI3K/AKT signaling pathway to promote glycogen synthesis and GLUT4 translocation. Besides, Dios treatment reshaped the unbalanced gut microbiota by suppressing the ratio of Firmicutes/Bacteroidetes and markedly increasing the richness of C. glu. Moreover, treatment with C. glu and Dios together could markedly ameliorate glucose metabolism by up-regulating IRS/PI3K/AKT signaling pathway to promote glycogen synthesis and GLUT4 translocation. CONCLUSIONS: Dios treatment remarkably ameliorated glucose metabolism in KK-Ay diabetic mice by the regulation of C. glu via IRS/PI3K/AKT signaling pathway and reshaped the unbalanced gut microbiota. Our study provided evidence for the application of Dios to the treatment of T2DM.


Asunto(s)
Corynebacterium glutamicum/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Flavonoides/farmacología , Hipoglucemiantes/farmacología , Animales , Glucemia/metabolismo , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Glucógeno/metabolismo , Insulina/sangre , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Ribosómico 16S , Factores de Transcripción/metabolismo
17.
Cell Death Dis ; 12(3): 276, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723221

RESUMEN

There is increasing evidence that the core clock gene Period 1 (PER1) plays important roles in the formation of various tumors. However, the biological functions and mechanism of PER1 in promoting tumor progression remain largely unknown. Here, we discovered that PER1 was markedly downregulated in oral squamous cell carcinoma (OSCC). Then, OSCC cell lines with stable overexpression, knockdown, and mutation of PER1 were established. We found that PER1 overexpression significantly inhibited glycolysis, glucose uptake, proliferation, and the PI3K/AKT pathway in OSCC cells. The opposite effects were observed in PER1-knockdown OSCC cells. After treatment of PER1-overexpressing OSCC cells with an AKT activator or treatment of PER1-knockdown OSCC cells with an AKT inhibitor, glycolysis, glucose uptake, and proliferation were markedly rescued. In addition, after treatment of PER1-knockdown OSCC cells with a glycolysis inhibitor, the increase in cell proliferation was significantly reversed. Further, coimmunoprecipitation (Co-IP) and cycloheximide (CHX) chase experiment demonstrated that PER1 can bind with RACK1 and PI3K to form the PER1/RACK1/PI3K complex in OSCC cells. In PER1-overexpressing OSCC cells, the abundance of the PER1/RACK1/PI3K complex was significantly increased, the half-life of PI3K was markedly decreased, and glycolysis, proliferation, and the PI3K/AKT pathway were significantly inhibited. However, these effects were markedly reversed in PER1-mutant OSCC cells. In vivo tumorigenicity assays confirmed that PER1 overexpression inhibited tumor growth while suppressing glycolysis, proliferation, and the PI3K/AKT pathway. Collectively, this study generated the novel findings that PER1 suppresses OSCC progression by inhibiting glycolysis-mediated cell proliferation via the formation of the PER1/RACK1/PI3K complex to regulate the stability of PI3K and the PI3K/AKT pathway-dependent manner and that PER1 could potentially be a valuable therapeutic target in OSCC.


Asunto(s)
Proliferación Celular , Glucólisis , Neoplasias de la Boca/enzimología , Proteínas de Neoplasias/metabolismo , Proteínas Circadianas Period/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Receptores de Cinasa C Activada/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/enzimología , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Proteínas Circadianas Period/genética , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carga Tumoral
18.
Int Immunopharmacol ; 91: 107173, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33352441

RESUMEN

Cordycepin (CRD), an adenosine analog derived from traditional Chinese medicine, is an active component in Cordyceps militaris. It has been shown to have many protective effects during liver injury and ameliorate liver disease progression, but little is known about its effect on non-alcoholic fatty liver disease (NAFLD). This study aims to explore the effects of CRD on obesity-induced NAFLD. In this experiment, C57BL/6 J mice were randomly assigned into normal control group (NC), high fat diet group (HFD) and HFD + CRD group for 8 weeks. The body weights were recorded weekly, at the end of the experiments, the liver and serum samples were collected. We found that CRD administration reduced body weight and decreased the weight of adipose and liver, and CRD relieved liver injure through diminishing of histopathological changes and decreasing serum levels of AST, ALT, TG, TC, LDL-C and increased the level of HDL-C. Furthermore, treatment with CRD significantly alleviated expression of inflammatory factors (TNF-α, IL-6 and Il-1ß) and macrophage markers (MCP1, MIP2, mKC and VCAM1). On the other hand, compared with HFD group, the CRD treated group markedly down-regulated relative proteins of lipid anabolism (SREBP1-c, ACC, SCD-1, LXRα and CD36) and up-regulated relative proteins of ß-oxidation (p-AMPK, AMPK, CPT-1 and PPARα). In summary, our results suggest that CRD can be a potential therapeutic agent in the prevention and treatment of NAFLD, which may be closely related to its effect on lipid metabolism and inflammatory responses.


Asunto(s)
Antiinflamatorios/farmacología , Desoxiadenosinas/farmacología , Hipolipemiantes/farmacología , Mediadores de Inflamación/metabolismo , Lípidos/sangre , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Regulación hacia Abajo , Hiperlipidemias/inmunología , Hiperlipidemias/metabolismo , Hiperlipidemias/prevención & control , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/prevención & control , Oxidación-Reducción
19.
J Colloid Interface Sci ; 602: 105-114, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118600

RESUMEN

HYPOTHESIS: Smart membranes with robust liquid water resistance and water vapor transmission capabilities have attracted growing attentions in personal protective equipment and environmental protection. However, current fluorine-free waterproof and breathable nanofibrous membranes are usually prepared through toxic solvent-based electrospinning, which raises great concerns about their environmental impacts. EXPERIMENTS: We develop environmentally friendly fluorine-free polyurethane nanofibrous membranes with robust waterproof and breathable performances via waterborne electrospinning without post-coating treatment. The incorporation of the low surface energy long-chain alkyls and polycarbodiimide crosslinker imparts the interconnective porous channels with high hydrophobicity to waterborne fluorine-free polyurethane nanofibrous membranes. FINDINGS: The waterborne fluorine-free nanofibrous membranes show high water contact angle of 137.1°, robust hydrostatic pressure of 35.9 kPa, desirable water vapor transmission rate of 4885 g m-2 d-1, excellent air permeability of 19.9 mm s-1, good tensile elongation of 372.4%, and remarkable elasticity of 56.9%, thus offering strong potential for protective textiles and leaving no toxic solvent residues. This work could also serve as a guide for the design of green and high-performance fibrous materials used for medical hygiene, wearable electronics, water desalination, and oil/water separation.


Asunto(s)
Nanofibras , Flúor , Membranas Artificiales , Poliuretanos , Textiles
20.
ACS Appl Mater Interfaces ; 13(48): 58027-58035, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34821147

RESUMEN

Warmth retention equipment for personal cold protection is highly demanded in freezing weather; however, most present warmth retention materials suffer from high thermal conductivity, weak mechanical properties, and strong flammability, resulting in serious security risks. Herein, we report a facile strategy to fabricate nano-/microfibrous sponges with superelasticity, robust flame retardation, and effective warmth retention performance via direct electrospinning. The three-dimensional fluffy sponges with low volume density and high porosity are constructed by accurately regulating the relative humidity; meanwhile, the mechanically robust polyamide-imide nanofibers with high limit oxygen index (LOI) are innovatively introduced to improve the structural stability and flammability of the nano-/microfibrous sponges. Strikingly, the developed nano-/microfibrous sponges exhibit ultralight characteristics (6.9 mg cm-3), superelasticity (∼0% plastic deformation after 100 compression tests), effective flame retardant with LOI of 26.2%, and good heat preservation ability (thermal conductivity of 24.6 mW m-1 K-1). This work may shed light on designing superelastic and flame-retardant warmth retention materials for various applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA