Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Microbiol ; 26(4): 951-959, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36997813

RESUMEN

The study of the effects of the magnetic field (MF) on living matter continues to be a dilemma. Until now, the interaction mechanisms of MF with living matter that explain the observed phenomena are unknown. Despite the existing literature and the multiple effects described to date, there are few published articles that study the combined effect of MF with other physical agents during the cellular aging process. In this sense, the aim of this work is to study whether low frequency and intensity pulsed and sinusoidal MF exposure produce alterations in the cell killing effect of ultraviolet C (UVC) radiation and thermal shock during the chronological aging of S. cerevisiae. Yeast cells were exposed to 2.45 mT (50 Hz) sinusoidal MF and 1.5 mT (25 Hz) pulsed MF, during 40 days of aging, in combination with UVC radiation (50 J/m2) and/or thermal shock (52°C). Cell survival was evaluated by clonogenic assay. The exposure of yeast to pulsed MF produces an acceleration of aging, which is not observed in cells exposed to sinusoidal MF. The pulsed MF modifies the cellular response to damaging agents only in aged S. cerevisiae cells. In this sense, the pulsed MF applied increases the damage induced by UVC radiation and by thermal shock. In contrast, the sinusoidal MF used has no effect.


Asunto(s)
Campos Magnéticos , Saccharomyces cerevisiae , Rayos Ultravioleta , Supervivencia Celular
2.
Int J Environ Health Res ; 32(11): 2471-2483, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34474627

RESUMEN

The response of plants to magnetic fields (MF) is not fully understood. This work studies the effects of pulsed MF on the germination and growth of Allium cepa roots. Onions were exposed to 25Hz, 1.5mT, 33h. Pulsed MF was generated by a Helmholtz-type equipment that generated rectangular voltage pulses. The results showed that fewer roots grew in the specimens exposed to pulsed MF (14±6 roots on day 1 to 21±8 on day 4) than in the control groups (32±17 to 48±23) (p<0.05 Friedman). Control specimens showed a root mean length of 7±4 mm (day 1) and 24±10 mm (day 4). The specimens treated with pulsed MF showed a length of 4±2 mm (day 1), reaching 18±9 mm on day 4 (p<0.001 ANOVA). In conclusion, the exposure of Allium cepa specimens to 25Hz, 1.5mT pulsed MF during 33h produces a decrease in the germination and growth of roots.


Asunto(s)
Cebollas , Raíces de Plantas , Germinación , Campos Magnéticos
3.
Int J Environ Health Res ; 32(8): 1756-1767, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33797308

RESUMEN

This study evaluates the DNA damage induced by pulsed magnetic field (MF) on S. cerevisiae cells exposed during chronological aging. Samples were exposed to 25 Hz pulsed MF (1.5mT, 8 h/day) while cells were aging chronologically. Clonogenic drop test was used to study cellular survival and the mutation frequency was evaluated by scoring the spontaneous revertant mutants. DNA damage analysis was performed after aging by electrophoresis and image analysis. Yeast cells aged during 40 days of exposure showing that pulsed MF exposure induced a premature aging. In addition, a gradual increase in spontaneous mutants was found in pulsed MF samples in relation to unexposed controls. An increase in DNA degradation, over the background level in relation to controls, was observed at the end of the exposure period. In conclusion, exposure of S. cerevisiae cells to pulsed MF during chronological aging could induce genomic DNA damage.


Asunto(s)
Daño del ADN , Saccharomyces cerevisiae , ADN , Genómica , Campos Magnéticos , Saccharomyces cerevisiae/genética
4.
Int J Radiat Biol ; 99(5): 853-865, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36069754

RESUMEN

PURPOSE: Many articles describe the effects of extremely low-frequency magnetic fields (MFs) on DNA damage induction. However, the mechanism of MF interaction with living matter is not yet known with certainty. Some works suggest that MF could induce an increase in the efficacy of reactive oxygen species (ROS) production. This work investigates whether pulsed MF exposure produces alterations in genomic DNA damage induced by co-exposure to DNA damaging agents (bleomycin and methyl methanesulfonate (MMS)). MATERIALS AND METHODS: Genomic DNA, prepared from S. cerevisiae cultures, was exposed to pulsed MF (1.5 mT peak, 25 Hz) and MMS (0-1%) (15-60 min), and to MF and bleomycin (0-0.6 IU/mL) (24-72 h). The damage induced to DNA was evaluated by electrophoresis and image analysis. RESULTS: Pulsed MF induced an increment in the level of DNA damage produced by MMS and bleomycin in all groups at the exposure conditions assayed. CONCLUSIONS: Pulsed MF could modulate the cytotoxic action of MMS and bleomycin. The observed effect could be the result of a multifactorial process influenced by the type of agent that damages DNA, the dose, and the duration of the exposure to the pulsed MF.


Asunto(s)
Campos Magnéticos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Daño del ADN , Metilmetanosulfonato/toxicidad , ADN , Genómica
5.
Antioxidants (Basel) ; 12(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37759994

RESUMEN

The repair of the damage produced to the genome and proteome by the action of ionizing radiation, oxidizing agents, and during aging is important to maintain cellular homeostasis. Many of the metabolic pathways influence multiple processes. In this way, this work aims to study the relationship between resistance/response to ionizing radiation, cellular aging, and the response mechanisms to oxidative stress, free radicals, reactive oxygen species (ROS), and antioxidant activity in the yeast S. cerevisiae. Systems biology allows us to use tools that reveal the molecular mechanisms common to different cellular response phenomena. The results found indicate that homologous recombination, non-homologous end joining, and base excision repair pathways are the most important common processes necessary to maintain cellular homeostasis. The metabolic routes of longevity regulation are those that jointly contribute to the three phenomena studied. This study proposes eleven common biomarkers for response/resistance to ionizing radiation and aging (EXO1, MEC1, MRE11, RAD27, RAD50, RAD51, RAD52, RAD55, RAD9, SGS1, YKU70) and two biomarkers for response/resistance to radiation and oxidative stress, free radicals, ROS, and antioxidant activity (NTG1, OGG1). In addition, it is important to highlight that the HSP104 protein could be a good biomarker common to the three phenomena studied.

6.
Int J Radiat Biol ; 98(8): 1301-1315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35225732

RESUMEN

PURPOSE: The aim of this work is to review the published studies on radiation resistance mechanisms and molecular markers involved in different tumors. The revision has been focused in the last 5 years (2016-2021). CONCLUSIONS: Radioresistance is a cause of concern as it causes failure of radiation therapy and subsequent tumor relapse. Combination chemotherapy and radiation therapy are clinically successful in treating many types of tumors. Despite continued improvements in cancer treatment, locoregional recurrence or metastatic spread continues to occur in a high proportion of patients after being treated with radiation therapy or combination treatments. There is strong evidence that cancer stem cells contribute to radiation resistance, contributing to treatment failure. The mechanisms of radiation resistance in different tumors are not fully understood. A better understanding of cancer stem cells and the associated signaling pathways that regulate radiation resistance will open up new strategies for treating cancer by radiation therapy. Radiation can damage malignant cells mainly by the induction of DNA double-strand breaks. However, in some tumors appear resistant cells that repopulate the tumor following therapy leading over time to the failure of the treatment. Native mechanisms and induced pathways are the cause of radiation resistance. It has been described that numerous molecular markers acting through numerous mechanisms of action involved in radiation resistance, such as apoptosis resistance, alterations of cell growth, proliferation and DNA repair, hypoxia, increase in invasiveness and migration capacity, cell cycle alterations, and expression of heat shock proteins, among others. Therefore, resistance to radiation is a multifactorial phenomenon that, in different cell types, occurs through different regulatory mechanisms in which different molecules intervene. Resistance can be acquired by altering different regulatory pathways in different tumors. The knowledge of radiation resistance markers could help in the classification and treatment of patients with more aggressive tumors.


Asunto(s)
Neoplasias , Tolerancia a Radiación , Ciclo Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Neoplasias/metabolismo , Tolerancia a Radiación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA