Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 35(1): e21148, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196122

RESUMEN

Mitochondrial membrane potential (ΔΨm) is a global indicator of mitochondrial function. Previous reports on heterogeneity of ΔΨm were qualitative or semiquantitative. Here, we quantified intercellular differences in ΔΨm in unsynchronized human cancer cells, cells synchronized in G1, S, and G2, and human fibroblasts. We assessed ΔΨm using a two-pronged microscopy approach to measure relative fluorescence of tetramethylrhodamine methyl ester (TMRM) and absolute values of ΔΨm. We showed that ΔΨm is more heterogeneous in cancer cells compared to fibroblasts, and it is maintained throughout the cell cycle. The effect of chemical inhibition of the respiratory chain and ATP synthesis differed between basal, low and high ΔΨm cells. Overall, our results showed that intercellular heterogeneity of ΔΨm is mainly modulated by intramitochondrial factors, it is independent of the ΔΨm indicator and it is not correlated with intercellular heterogeneity of plasma membrane potential or the phases of the cell cycle.


Asunto(s)
Ciclo Celular , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neoplasias/metabolismo , Células Hep G2 , Humanos , Mitocondrias/patología , Neoplasias/patología
2.
Am J Physiol Renal Physiol ; 319(1): F63-F75, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32463726

RESUMEN

Diuretics and renin-angiotensin system blockers are often insufficient to control the blood pressure (BP) in salt-sensitive (SS) subjects. Abundant data support the proposal that the level of atrial natriuretic peptide may correlate with the pathogenesis of SS hypertension. We hypothesized here that increasing atrial natriuretic peptide levels with sacubitril, combined with renin-angiotensin system blockage by valsartan, can be beneficial for alleviation of renal damage in a model of SS hypertension, the Dahl SS rat. To induce a BP increase, rats were challenged with a high-salt 4% NaCl diet for 21 days, and chronic administration of vehicle or low-dose sacubitril and/or valsartan (75 µg/day each) was performed. Urine flow, Na+ excretion, and water consumption were increased on the high-salt diet compared with the starting point (0.4% NaCl) in all groups but remained similar among the groups at the end of the protocol. Upon salt challenge, we observed a mild decrease in systolic BP and urinary neutrophil gelatinase-associated lipocalin levels (indicative of alleviated tubular damage) in the valsartan-treated groups. Sacubitril, as well as sacubitril/valsartan, attenuated the glomerular filtration rate decline induced by salt. Alleviation of protein cast formation and lower renal medullary fibrosis were observed in the sacubitril/valsartan- and valsartan-treated groups, but not when sacubitril alone was administered. Interestingly, proteinuria was mildly mitigated only in rats that received sacubitril/valsartan. Further studies of the effects of sacubitril/valsartan in the setting of SS hypertension, perhaps involving a higher dose of the drug, are warranted to determine if it can interfere with the progression of the disease.


Asunto(s)
Aminobutiratos/administración & dosificación , Antagonistas de Receptores de Angiotensina/administración & dosificación , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Tetrazoles/administración & dosificación , Valsartán/administración & dosificación , Aminobutiratos/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Animales , Compuestos de Bifenilo , Combinación de Medicamentos , Hipertensión/fisiopatología , Enfermedades Renales/fisiopatología , Masculino , Ratas , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético , Tetrazoles/uso terapéutico , Valsartán/uso terapéutico
3.
J Lipid Res ; 59(2): 312-329, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29282302

RESUMEN

Inhibiting the glutamate/cystine antiporter system xc-, a key antioxidant defense machinery in the CNS, could trigger a novel form of regulated necrotic cell death, ferroptosis. The underlying mechanisms of system xc--dependent cell demise were elucidated using primary oligodendrocytes (OLs) treated with glutamate to block system xc- function. Pharmacological analysis revealed ferroptosis as a major contributing factor to glutamate-initiated OL death. A sphingolipid profile showed elevations of ceramide species and sphingosine that were preventable by inhibiting of an acid sphingomyelinase (ASM) activity. OL survival was enhanced by both downregulating ASM expression and blocking ASM activity. Glutamate-induced ASM activation seems to involve posttranscriptional mechanisms and was associated with a decreased GSH level. Further investigation of the mechanisms of OL response to glutamate revealed enhanced reactive oxygen species production, augmented lipid peroxidation, and opening of the mitochondrial permeability transition pore that were attenuated by hindering ASM. Of note, knocking down sirtuin 3, a deacetylase governing the mitochondrial antioxidant system, reduced OL survival. The data highlight the importance of the mitochondrial compartment in regulated necrotic cell death and accentuate the novel role of ASM in disturbing mitochondrial functions during OL response to glutamate toxicity, which is essential for pathobiology in stroke and traumatic brain injury.


Asunto(s)
Ácido Glutámico/farmacología , Mitocondrias/enzimología , Mitocondrias/patología , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Células Cultivadas , Femenino , Ratones , Mitocondrias/efectos de los fármacos , Necrosis/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
4.
J Biol Chem ; 292(25): 10490-10519, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28389561

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive clinical syndrome of fatal outcome. The lack of information about the signaling pathways that sustain fibrosis and the myofibroblast phenotype has prevented the development of targeted therapies for IPF. Our previous study showed that isolated fibrogenic lung fibroblasts have high endogenous levels of the hyaluronan receptor, CD44V6 (CD44 variant containing exon 6), which enhances the TGFß1 autocrine signaling and induces fibroblasts to transdifferentiate into myofibroblasts. NADPH oxidase 4 (NOX4) enzyme, which catalyzes the reduction of O2 to hydrogen peroxide (H2O2), has been implicated in the cardiac and lung myofibroblast phenotype. However, whether CD44V6 regulates NOX4 to mediate tissue repair and fibrogenesis is not well-defined. The present study assessed the mechanism of how TGF-ß-1-induced CD44V6 regulates the NOX4/reactive oxygen species (ROS) signaling that mediates the myofibroblast differentiation. Specifically, we found that NOX4/ROS regulates hyaluronan synthesis and the transcription of CD44V6 via an effect upon AP-1 activity. Further, CD44V6 is part of a positive-feedback loop with TGFß1/TGFßRI signaling that acts to increase NOX4/ROS production, which is required for myofibroblast differentiation, myofibroblast differentiation, myofibroblast extracellular matrix production, myofibroblast invasion, and myofibroblast contractility. Both NOX4 and CD44v6 are up-regulated in the lungs of mice subjected to experimental lung injury and in cases of human IPF. Genetic (CD44v6 shRNA) or a small molecule inhibitor (CD44v6 peptide) targeting of CD44v6 abrogates fibrogenesis in murine models of lung injury. These studies support a function for CD44V6 in lung fibrosis and offer proof of concept for therapeutic targeting of CD44V6 in lung fibrosis disorders.


Asunto(s)
Comunicación Autocrina , Receptores de Hialuranos/biosíntesis , Fibrosis Pulmonar Idiopática/metabolismo , Miofibroblastos/metabolismo , NADPH Oxidasas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Receptores de Hialuranos/genética , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones , Miofibroblastos/patología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta1/genética
5.
Arterioscler Thromb Vasc Biol ; 37(6): 1180-1193, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28473444

RESUMEN

OBJECTIVE: A disintegrin and metalloproteinase ADAM17 (tumor necrosis factor-α [TNF]-converting enzyme) regulates soluble TNF levels. We tested the hypothesis that aging-induced activation in adipose tissue (AT)-expressed ADAM17 contributes to the development of remote coronary microvascular dysfunction in obesity. APPROACH AND RESULTS: Coronary arterioles (CAs, ≈90 µm) from right atrial appendages and mediastinal AT were examined in patients (aged: 69±11 years, BMI: 30.2±5.6 kg/m2) who underwent open heart surgery. CA and AT were also studied in 6-month and 24-month lean and obese mice fed a normal or high-fat diet. We found that obesity elicited impaired endothelium-dependent CA dilations only in older patients and in aged high-fat diet mice. Transplantation of AT from aged obese, but not from young or aged, mice increased serum cytokine levels, including TNF, and impaired CA dilation in the young recipient mice. In patients and mice, obesity was accompanied by age-related activation of ADAM17, which was attributed to vascular endothelium-expressed ADAM17. Excess, ADAM17-shed TNF from AT arteries in older obese patients was sufficient to impair CA dilation in a bioassay in which the AT artery was serially connected to a CA. Moreover, we found that the increased activity of endothelial ADAM17 is mediated by a diminished inhibitory interaction with caveolin-1, owing to age-related decline in caveolin-1 expression in obese patients and mice or to genetic deletion of caveolin-1. CONCLUSIONS: The present study indicates that aging and obesity cooperatively reduce caveolin-1 expression and increase vascular endothelial ADAM17 activity and soluble TNF release in AT, which may contribute to the development of remote coronary microvascular dysfunction in older obese patients.


Asunto(s)
Proteína ADAM17/metabolismo , Tejido Adiposo/enzimología , Envejecimiento/metabolismo , Arteriolas/enzimología , Enfermedad de la Arteria Coronaria/enzimología , Vasos Coronarios/enzimología , Vasodilatación , Proteína ADAM17/genética , Tejido Adiposo/trasplante , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Animales , Arteriolas/fisiopatología , Caveolina 1/deficiencia , Caveolina 1/genética , Caveolina 1/metabolismo , Células Cultivadas , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/fisiopatología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/enzimología , Obesidad/genética , Obesidad/fisiopatología , Interferencia de ARN , Factores de Riesgo , Transducción de Señal , Transfección , Factor de Necrosis Tumoral alfa/metabolismo
6.
Int J Clin Pharmacol Ther ; 56(10): 467-475, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29974857

RESUMEN

Baclofen is a centrally-acting γ-amino butyric acid agonist used mainly in the symptomatic management of spasticity originating from the spinal cord. It is absorbed completely from the gastrointestinal tract, metabolized by the liver to a minor degree, and excreted unchanged by the kidneys. Baclofen is moderately lipophilic and can cross the blood-brain barrier easily. At the usual dosage, it acts mainly at the spinal level without central nervous system (CNS) side effects. During renal failure, however, the elimination of the drug will decrease with a prolonged half-life, resulting in a larger area-under-the-curve exposure and disproportionate CNS toxicity. Clinically, these patients with renal failure may present with a variety of toxic symptoms manifesting at therapeutic/sub-therapeutic doses of baclofen. In cases of unexplained mental status changes in a patient receiving baclofen therapy, a careful assessment of renal function and a high suspicion of baclofen-induced encephalopathy will be key to the diagnosis.
.


Asunto(s)
Baclofeno/efectos adversos , Enfermedades del Sistema Nervioso Central/inducido químicamente , Relajantes Musculares Centrales/efectos adversos , Insuficiencia Renal/complicaciones , Baclofeno/administración & dosificación , Humanos , Relajantes Musculares Centrales/administración & dosificación
7.
J Biol Chem ; 291(37): 19642-50, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27458020

RESUMEN

Non-proliferating cells oxidize respiratory substrates in mitochondria to generate a protonmotive force (Δp) that drives ATP synthesis. The mitochondrial membrane potential (ΔΨ), a component of Δp, drives release of mitochondrial ATP(4-) in exchange for cytosolic ADP(3-) via the electrogenic adenine nucleotide translocator (ANT) located in the mitochondrial inner membrane, which leads to a high cytosolic ATP/ADP ratio up to >100-fold greater than matrix ATP/ADP. In rat hepatocytes, ANT inhibitors, bongkrekic acid (BA), and carboxyatractyloside (CAT), and the F1FO-ATP synthase inhibitor, oligomycin (OLIG), inhibited ureagenesis-induced respiration. However, in several cancer cell lines, OLIG but not BA and CAT inhibited respiration. In hepatocytes, respiratory inhibition did not collapse ΔΨ until OLIG, BA, or CAT was added. Similarly, in cancer cells OLIG and 2-deoxyglucose, a glycolytic inhibitor, depolarized mitochondria after respiratory inhibition, which showed that mitochondrial hydrolysis of glycolytic ATP maintained ΔΨ in the absence of respiration in all cell types studied. However in cancer cells, BA, CAT, and knockdown of the major ANT isoforms, ANT2 and ANT3, did not collapse ΔΨ after respiratory inhibition. These findings indicated that ANT was not mediating mitochondrial ATP/ADP exchange in cancer cells [corrected]. We propose that suppression of ANT contributes to low cytosolic ATP/ADP, activation of glycolysis, and a Warburg metabolic phenotype in proliferating cells.


Asunto(s)
Translocador 2 del Nucleótido Adenina/metabolismo , Translocador 3 del Nucleótido Adenina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Hepatocitos/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Glucólisis/efectos de los fármacos , Hepatocitos/patología , Masculino , Mitocondrias Hepáticas/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
8.
Am J Physiol Renal Physiol ; 307(5): F551-9, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899059

RESUMEN

Polycystic kidney disease (PKD) is a common genetic disorder leading to cyst formation in the kidneys and other organs that ultimately results in kidney failure and death. Currently, there is no therapy for slowing down or stopping the progression of PKD. In this study, we identified the disintegrin metalloenzyme 17 (ADAM17) as a key regulator of cell proliferation in kidney tissues of conditional knockout Ift88(-/-) mice and collecting duct epithelial cells from Ift88°(rpk) mice, animal models of autosomal recessive polycystic kidney disease (ARPKD). Using Western blotting, an enzyme activity assay, and a growth factor-shedding assay in the presence or absence of the specific ADAM17 inhibitor TMI-005, we show that increased expression and activation of ADAM17 in the cystic kidney and in collecting duct epithelial cells originating from the Ift88°(rpk) mice (designated as PKD cells) lead to constitutive shedding of several growth factors, including heparin-binding EGF-like growth factor (HB-EGF), amphiregulin, and transforming growth factor-α (TGF-α). Increased growth factor shedding induces activation of the EGFR/MAPK/ERK pathway and maintains higher cell proliferation rate in PKD cells compared with control cells. PKD cells also displayed increased lactate formation and extracellular acidification indicative of aerobic glycolysis (Warburg effect), which was blocked by ADAM17 inhibition. We propose that ADAM17 is a key promoter of cellular proliferation in PKD cells by activating the EGFR/ERK axis and a proproliferative glycolytic phenotype.


Asunto(s)
Proteínas ADAM/fisiología , Proliferación Celular/fisiología , Células Epiteliales/patología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Glucólisis/fisiología , Túbulos Renales Colectores/patología , Enfermedades Renales Poliquísticas/fisiopatología , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/efectos de los fármacos , Proteína ADAM17 , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Receptores ErbB/fisiología , Femenino , Factor de Crecimiento Similar a EGF de Unión a Heparina/fisiología , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/fisiopatología , Masculino , Ratones , Ratones Noqueados , Morfolinas/farmacología , Fenotipo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Factor de Crecimiento Transformador alfa/fisiología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
9.
Am J Physiol Lung Cell Mol Physiol ; 306(2): L162-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24213915

RESUMEN

The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88(-) mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88(-) mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function.


Asunto(s)
Hiperreactividad Bronquial/patología , Bronquiectasia/patología , Cilios/patología , Cilios/fisiología , Trastornos de la Motilidad Ciliar/patología , Animales , Hiperreactividad Bronquial/fisiopatología , Bronquiectasia/fisiopatología , Broncoconstrictores/farmacología , Trastornos de la Motilidad Ciliar/fisiopatología , Modelos Animales de Enfermedad , Cloruro de Metacolina/farmacología , Ratones , Ratones Noqueados , Depuración Mucociliar/fisiología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología , Mucosa Respiratoria/fisiopatología , Proteínas Supresoras de Tumor/genética
11.
Am J Physiol Renal Physiol ; 305(3): F323-32, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23678045

RESUMEN

Matrix protein accumulation is a prominent feature of diabetic nephropathy that contributes to renal fibrosis and decline in renal function. The pathogenic mechanisms of matrix accumulation are incompletely characterized. We investigated if the matrix metalloprotease a disintegrin and metalloprotease1 7 (ADAM17), known to cleave growth factors and cytokines, is activated in the kidney cortex of OVE26 type 1 diabetic mice and the potential mechanisms by which ADAM17 mediates extracellular matrix accumulation. Protein expression and activity of ADAM17 were increased in OVE26 kidney cortex. Using a pharmacological inhibitor to ADAM17, TMI-005, we determined that ADAM17 activation results in increased type IV collagen, Nox4, and NADPH oxidase activity in the kidney cortex of diabetic mice. In cultured mouse proximal tubular epithelial cells (MCTs), high glucose increases ADAM17 activity, Nox4 and fibronectin expression, cellular collagen content, and NADPH oxidase activity. These effects of glucose were inhibited when cells were pretreated with TMI-005 and/or transfected with small interfering ADAM17. Collectively, these data indicate a novel mechanism whereby hyperglycemia in diabetes increases extracellular matrix protein expression in the kidney cortex through activation of ADAM17 and enhanced oxidative stress through Nox enzyme activation. Additionally, our study is the first to provide evidence that Nox4 is downstream of ADAM17.


Asunto(s)
Proteínas ADAM/fisiología , Diabetes Mellitus Tipo 1/metabolismo , Corteza Renal/metabolismo , NADPH Oxidasas/metabolismo , Proteína ADAM17 , Animales , Western Blotting , Peso Corporal/fisiología , Colágeno/metabolismo , Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Técnica del Anticuerpo Fluorescente , Glucosa/metabolismo , Glucosa/farmacología , Técnicas para Inmunoenzimas , Corteza Renal/enzimología , Masculino , Ratones , NADPH Oxidasa 4 , NADPH Oxidasas/biosíntesis , NADPH Oxidasas/genética , Tamaño de los Órganos/fisiología , ARN Interferente Pequeño/farmacología
12.
Crit Rev Biochem Mol Biol ; 45(2): 146-69, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20184396

RESUMEN

This review focuses on the role of ADAM-17 in disease. Since its debut as the tumor necrosis factor converting enzyme (TACE), ADAM-17 has been reported to be an indispensible regulator of almost every cellular event from proliferation to migration. The central role of ADAM-17 in cell regulation is rooted in its diverse array of substrates: cytokines, growth factors, and their receptors as well as adhesion molecules are activated or inactivated by their cleavage with ADAM-17. It is therefore not surprising that ADAM-17 is implicated in numerous human diseases including cancer, heart disease, diabetes, rheumatoid arthritis, kidney fibrosis, Alzheimer's disease, and is a promising target for future treatments. The specific role of ADAM-17 in the pathophysiology of these diseases is very complex and depends on the cellular context. To exploit the therapeutic potential of ADAM-17, it is important to understand how its activity is regulated and how specific organs and cells can be targeted to inactivate or activate the enzyme.


Asunto(s)
Proteínas ADAM/fisiología , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/química , Proteína ADAM17 , Animales , Enfermedad , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Especificidad por Sustrato , Factor de Necrosis Tumoral alfa/metabolismo
13.
Front Oncol ; 13: 1152553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427141

RESUMEN

Mitochondrial metabolism is an important contributor to cancer cell survival and proliferation that coexists with enhanced glycolytic activity. Measuring mitochondrial activity is useful to characterize cancer metabolism patterns, to identify metabolic vulnerabilities and to identify new drug targets. Optical imaging, especially fluorescent microscopy, is one of the most valuable tools for studying mitochondrial bioenergetics because it provides semiquantitative and quantitative readouts as well as spatiotemporal resolution of mitochondrial metabolism. This review aims to acquaint the reader with microscopy imaging techniques currently used to determine mitochondrial membrane potential (ΔΨm), nicotinamide adenine dinucleotide (NADH), ATP and reactive oxygen species (ROS) that are major readouts of mitochondrial metabolism. We describe features, advantages, and limitations of the most used fluorescence imaging modalities: widefield, confocal and multiphoton microscopy, and fluorescent lifetime imaging (FLIM). We also discus relevant aspects of image processing. We briefly describe the role and production of NADH, NADHP, flavins and various ROS including superoxide and hydrogen peroxide and discuss how these parameters can be analyzed by fluorescent microscopy. We also explain the importance, value, and limitations of label-free autofluorescence imaging of NAD(P)H and FAD. Practical hints for the use of fluorescent probes and newly developed sensors for imaging ΔΨm, ATP and ROS are described. Overall, we provide updated information about the use of microscopy to study cancer metabolism that will be of interest to all investigators regardless of their level of expertise in the field.

14.
Am J Physiol Renal Physiol ; 302(7): F801-8, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22205228

RESUMEN

Polycystic kidney disease (PKD) is a ciliopathy characterized by renal cysts and hypertension. These changes are presumably due to altered fluid and electrolyte transport in the collecting duct (CD). This is the site where vasopressin (AVP) stimulates vasopressin-2 receptor (V2R)-mediated aquaporin-2 (AQP2) insertion into the apical membrane. Since cysts frequently occur in the CD, we studied V2R and AQP2 trafficking and function in CD cell lines with stunted and normal cilia [cilia (-), cilia (+)] derived from the orpk mouse (hypomorph of the Tg737/Ift88 gene). Interestingly, only cilia (-) cells grown on culture dishes formed domes after apical AVP treatment. This observation led to our hypothesis that V2R mislocalizes to the apical membrane in the absence of a full-length cilium. Immunofluorescence indicated that AQP2 localizes to cilia and in a subapical compartment in cilia (+) cells, but AQP2 levels were elevated in both apical and basolateral membranes in cilia (-) cells after apical AVP treatment. Western blot analysis revealed V2R and glycosylated AQP2 in biotinylated apical membranes of cilia (-) but not in cilia (+) cells. In addition, apical V2R was functional upon apical desmopressin (DDAVP) treatment by demonstrating increased cAMP, water transport, and benzamil-sensitive equivalent short-circuit current (I(sc)) in cilia (-) cells but not in cilia (+) cells. Moreover, pretreatment with a PKA inhibitor abolished DDAVP stimulation of I(sc) in cilia (-) cells. Thus we propose that structural or functional loss of cilia leads to abnormal trafficking of AQP2/V2R leading to enhanced salt and water absorption. Whether such apical localization contributes to enhanced fluid retention and hypertension in PKD remains to be determined.


Asunto(s)
Acuaporina 2/metabolismo , Cilios/patología , Túbulos Renales Colectores/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Receptores de Vasopresinas/metabolismo , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Isoquinolinas , Túbulos Renales Colectores/patología , Ratones , Enfermedades Renales Poliquísticas/patología , Sulfonamidas , Vasopresinas
15.
Methods Mol Biol ; 2497: 1-10, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35771432

RESUMEN

Assessment of mitochondrial metabolism is multidimensional and time consuming, usually requiring specific training. Respiration, NADH generation, and mitochondrial membrane potential (ΔΨm) are dynamic readouts of the metabolism and bioenergetics of mitochondria. Methodologies available to determine functional parameters in isolated mitochondria and permeabilized cells are sometimes of limited use or inapplicable to studies in live cells. In particular, the sequential assessment of the activity of each complex in the electron transport chain has not been reported in intact cells. Here, we describe a novel approach to sequentially assess electron flow through all respiratory complexes in permeabilized and intact cells by respirometry. We also describe a highly sensitive and fast method to assess ΔΨm and NADH generation in live cells using plate reader assays. Thus, our combined method allows a relatively inexpensive and fast determination of three major readouts of mitochondrial function in a few hours, using equipment that is frequently available in many laboratories worldwide.


Asunto(s)
NAD , Consumo de Oxígeno , Respiración de la Célula , Metabolismo Energético , Mitocondrias/metabolismo , NAD/metabolismo
16.
Sci Rep ; 12(1): 8971, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624221

RESUMEN

Polyploid Giant Cancer Cells (PGCC) are increasingly being recognized as drivers of cancer recurrence. Therapy stress promotes the formation of these cells, which upon stress cessation often successfully generate more aggressive progeny that repopulate the tumor. Therefore, identification of potential PGCC vulnerabilities is key to preventing therapy failure. We have previously demonstrated that PGCC progeny formation depends on the lysosomal enzyme acid ceramidase (ASAH1). In this study, we compared transcriptomes of parental cancer cells and PGCC in the absence or presence of the ASAH1 inhibitor LCL521. Results show that PGCC express less INSIG1, which downregulates cholesterol metabolism and that inhibition of ASAH1 increased HMGCR which is the rate limiting enzyme in cholesterol synthesis. Confocal microscopy revealed that ceramide and cholesterol do not colocalize. Treatment with LCL521 or simvastatin to inhibit ASAH1 or HMGCR, respectively, resulted in accumulation of ceramide at the cell surface of PGCC and prevented PGCC progeny formation. Our results suggest that similarly to inhibition of ASAH1, disruption of cholesterol signaling is a potential strategy to interfere with PGCC progeny formation.


Asunto(s)
Neoplasias , Ciclo Celular , Ceramidas , Colesterol , Humanos , Poliploidía
17.
Autophagy ; 18(11): 2671-2685, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35293288

RESUMEN

Ethanol increases hepatic mitophagy driven by unknown mechanisms. Type 1 mitophagy sequesters polarized mitochondria for nutrient recovery and cytoplasmic remodeling. In Type 2, mitochondrial depolarization (mtDepo) initiates mitophagy to remove the damaged organelles. Previously, we showed that acute ethanol administration produces reversible hepatic mtDepo. Here, we tested the hypothesis that ethanol-induced mtDepo initiates Type 2 mitophagy. GFP-LC3 transgenic mice were gavaged with ethanol (2-6 g/kg) with and without pre-treatment with agents that decrease or increase mtDepo-Alda-1, tacrolimus, or disulfiram. Without ethanol, virtually all hepatocytes contained polarized mitochondria with infrequent autophagic GFP-LC3 puncta visualized by intravital microscopy. At ~4 h after ethanol treatment, mtDepo occurred in an all-or-none fashion within individual hepatocytes, which increased dose dependently. GFP-LC3 puncta increased in parallel, predominantly in hepatocytes with mtDepo. Mitochondrial PINK1 and PRKN/parkin also increased. After covalent labeling of mitochondria with MitoTracker Red (MTR), GFP-LC3 puncta encircled MTR-labeled mitochondria after ethanol treatment, directly demonstrating mitophagy. GFP-LC3 puncta did not associate with fat droplets visualized with BODIPY558/568, indicating that increased autophagy was not due to lipophagy. Before ethanol administration, rhodamine-dextran (RhDex)-labeled lysosomes showed little association with GFP-LC3. After ethanol treatment, TFEB (transcription factor EB) translocated to nuclei, and lysosomal mass increased. Many GFP-LC3 puncta merged with RhDex-labeled lysosomes, showing autophagosomal processing into lysosomes. After ethanol treatment, disulfiram increased, whereas Alda-1 and tacrolimus decreased mtDepo, and mitophagy changed proportionately. In conclusion, mtDepo after acute ethanol treatment induces mitophagic sequestration and subsequent lysosomal processing.Abbreviations : AcAld, acetaldehyde; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; ALD, alcoholic liver disease; Alda-1, N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; LAMP1, lysosomal-associated membrane protein 1; LMNB1, lamin B1; MAA, malondialdehyde-acetaldehyde adducts; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MPT, mitochondrial permeability transition; mtDAMPS, mitochondrial damage-associated molecular patterns; mtDepo, mitochondrial depolarization; mtDNA, mitochondrial DNA; MTR, MitoTracker Red; PI, propidium iodide; PINK1, PTEN induced putative kinase 1; PRKN, parkin; RhDex, rhodamine dextran; TFEB, transcription factor EB; Tg, transgenic; TMRM, tetramethylrhodamine methylester; TOMM20, translocase of outer mitochondrial membrane 20; VDAC, voltage-dependent anion channel.


Asunto(s)
Etanol , Mitofagia , Ratones , Animales , Mitofagia/genética , Etanol/farmacología , Etanol/metabolismo , Disulfiram , Tacrolimus , Autofagia , Ubiquitina-Proteína Ligasas/metabolismo , ADN Mitocondrial , Proteínas Quinasas/metabolismo , Acetaldehído
18.
Biomed Pharmacother ; 150: 112928, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35447542

RESUMEN

Voltage dependent anion channels (VDAC) control the flux of most anionic respiratory substrates, ATP, ADP, and small cations, crossing the outer mitochondrial membrane. VDAC closure contributes to the partial suppression of mitochondrial metabolism that favors the Warburg phenotype of cancer cells. Recently, it has been shown that NADH binds to a specific pocket in the inner surface of VDAC1, also conserved in VDAC2 and 3, closing the channel. We hypothesized that binding of small molecules to the NADH pocket, maintain VDAC in an open configuration by preventing closure induced by NADH and possible other endogenous regulators. We screened in silico, the South Carolina Compound Collection SC3 (~100,000 proprietary molecules), using shape-based queries of the NADH binding region of VDAC. After molecular docking of selected compounds, we physically screened candidates using mitochondrial membrane potential (ΔΨm), as an overall readout of mitochondrial metabolism. We identified SC18, as the most potent compound. SC18 bound to VDAC1, as assessed by a thermal shift assay. Short-term treatment with SC18 decreased ΔΨm in SNU-449 and HepG2 human hepatocarcinoma cells. Mitochondrial depolarization was similar in wild type, VDAC1/2, 1/3, and 2/3 double KO HepG2 cells indicating that the effect of SC18 was not VDAC isoform-dependent. In addition, SC18 decreased mitochondrial NADH and cellular ATP production; and increased basal respiration. Long-term exposure to SC18, decreased cell proliferation as determined by wound-healing and cell viability assays. In summary, SC18 is a novel VDAC-targeting small molecule that induces mitochondrial dysfunction and inhibits cell proliferation.


Asunto(s)
Neoplasias Hepáticas , NAD , Adenosina Trifosfato/metabolismo , Humanos , Neoplasias Hepáticas/patología , Mitocondrias , Simulación del Acoplamiento Molecular , NAD/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
19.
Cancer Res ; 82(10): 1969-1990, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35404405

RESUMEN

Mitochondria and endoplasmic reticulum (ER) share structural and functional networks and activate well-orchestrated signaling processes to shape cells' fate and function. While persistent ER stress (ERS) response leads to mitochondrial collapse, moderate ERS promotes mitochondrial function. Strategies to boost antitumor T-cell function by targeting ER-mitochondria cross-talk have not yet been exploited. Here, we used carbon monoxide (CO), a short-lived gaseous molecule, to test whether engaging moderate ERS conditions can improve mitochondrial and antitumor functions in T cells. In melanoma antigen-specific T cells, CO-induced transient activation of ERS sensor protein kinase R-like endoplasmic reticulum kinase (PERK) significantly increased antitumor T-cell function. Furthermore, CO-induced PERK activation temporarily halted protein translation and induced protective autophagy, including mitophagy. The use of LC3-GFP enabled differentiation between the cells that prepare themselves to undergo active autophagy (LC3-GFPpos) and those that fail to enter the process (LC3-GFPneg). LC3-GFPpos T cells showed strong antitumor potential, whereas LC3-GFPneg cells exhibited a T regulatory-like phenotype, harbored dysfunctional mitochondria, and accumulated abnormal metabolite content. These anomalous ratios of metabolites rendered the cells with a hypermethylated state and distinct epigenetic profile, limiting their antitumor activity. Overall, this study shows that ERS-activated autophagy pathways modify the mitochondrial function and epigenetically reprogram T cells toward a superior antitumor phenotype to achieve robust tumor control. SIGNIFICANCE: Transient activation of ER stress with carbon monoxide drives mitochondrial biogenesis and protective autophagy that elicits superior antitumor T-cell function, revealing an approach to improving adoptive cell efficacy therapy.


Asunto(s)
Monóxido de Carbono , eIF-2 Quinasa , Apoptosis , Autofagia , Monóxido de Carbono/farmacología , Estrés del Retículo Endoplásmico/fisiología , Humanos , Linfocitos T/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
20.
Transl Oncol ; 17: 101350, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35091340

RESUMEN

The molecular implications of food consumption on cancer etiology are poorly defined. The rate of nutrition associated non-enzymatic glycoxidation, a reaction that occurs between reactive carbonyl groups on linear sugars and nucleophilic amino, lysyl and arginyl groups on fats and proteins, is rapidly increased by food cooking and manufacturing processes. In this study, we assign nutrition-associated glycoxidation with significant oncogenic potential, promoting prostate tumor growth, progression, and metastasis in vivo. Advanced glycation end products (AGEs) are the final irreversible product of non-enzymatic glycoxidation. Exogenous treatment of prostate tumor cells with a single AGE peptide replicated glycoxidation induced tumor growth in vivo. Mechanistically, receptor for AGE (RAGE) deficiency in the stroma inhibited AGE mediated tumor growth. Functionally, AGE treatment induced RAGE dimerization in activated fibroblasts which sustained and increased the migratory potential of tumor epithelial cells. These data identify a novel nutrition associated pathway that can promote a tissue microenvironment conducive for aggressive tumor growth. Targeted and/or interventional strategies aimed at reducing AGE bioavailability as a consequence of nutrition may be viewed as novel chemoprevention initiatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA