Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 567(7746): 81-86, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842637

RESUMEN

Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation1,2. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moiré superlattice3. In graphene/hexagonal boron nitride structures4, the presence of a moiré superlattice can lead to the observation of electronic minibands5-7, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor-insulator transition at magic twist angles8. Here, using semiconducting heterostructures assembled from incommensurate molybdenum diselenide (MoSe2) and tungsten disulfide (WS2) monolayers, we demonstrate that excitonic bands can hybridize, resulting in a resonant enhancement of moiré superlattice effects. MoSe2 and WS2 were chosen for the near-degeneracy of their conduction-band edges, in order to promote the hybridization of intra- and interlayer excitons. Hybridization manifests through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle, which occurs as hybridized excitons are formed by holes that reside in MoSe2 binding to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures in which the monolayer pairs are nearly aligned, resonant mixing of the electron states leads to pronounced effects of the geometrical moiré pattern of the heterostructure on the dispersion and optical spectra of the hybridized excitons. Our findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures9.

3.
Nano Lett ; 23(11): 5201-5208, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37235208

RESUMEN

Diverse emergent correlated electron phenomena have been observed in twisted-graphene layers. Many electronic structure predictions have been reported exploring this new field, but with few momentum-resolved electronic structure measurements to test them. We use angle-resolved photoemission spectroscopy to study the twist-dependent (1° < θ < 8°) band structure of twisted-bilayer, monolayer-on-bilayer, and double-bilayer graphene (tDBG). Direct comparison is made between experiment and theory, using a hybrid k·p model for interlayer coupling. Quantitative agreement is found across twist angles, stacking geometries, and back-gate voltages, validating the models and revealing field-induced gaps in twisted graphenes. However, for tDBG at θ = 1.5 ± 0.2°, close to the magic angle θ = 1.3°, a flat band is found near the Fermi level with measured bandwidth Ew = 31 ± 5 meV. An analysis of the gap between the flat band and the next valence band shows deviations between experiment (Δh = 46 ± 5 meV) and theory (Δh = 5 meV), indicative of lattice relaxation in this regime.

4.
Nat Mater ; 19(3): 299-304, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32015532

RESUMEN

Van der Waals (vdW) interfaces based on 2D materials are promising for optoelectronics, as interlayer transitions between different compounds allow tailoring of the spectral response over a broad range. However, issues such as lattice mismatch or a small misalignment of the constituent layers can drastically suppress electron-photon coupling for these interlayer transitions. Here, we engineered type-II interfaces by assembling atomically thin crystals that have the bottom of the conduction band and the top of the valence band at the Γ point, and thus avoid any momentum mismatch. We found that these van der Waals interfaces exhibit radiative optical transitions irrespective of the lattice constant, the rotational and/or translational alignment of the two layers or whether the constituent materials are direct or indirect gap semiconductors. Being robust and of general validity, our results broaden the scope of future optoelectronics device applications based on two-dimensional materials.

5.
Nanotechnology ; 32(20): 205703, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33624615

RESUMEN

Fe3GeTe2 is a layered crystal which has recently been shown to maintain its itinerant ferromagnetic properties even when atomically thin. Here, differential phase contrast scanning transmission electron microscopy is used to investigate the domain structure in a Fe3GeTe2 cross-sectional lamella at temperatures ranging from 95 to 250 K and at nanometre spatial resolution. Below the experimentally determined Curie temperature (T C) of 191 K, stripe domains magnetised along 〈0001〉, bounded with 180◦ Bloch type domain walls, are observed, transitioning to mixed Bloch-Néel type where the cross-sectional thickness is reduced below 50 nm. When warming towards T C, these domains undergo slight restructuring towards uniform size, before abruptly fading at T C. Localised loss of ferromagnetic order is seen over time, hypothesised to be a frustration of ferromagnetic order from ambient oxidation and basal cracking, which could enable selective modification of the magnetic properties for device applications.

6.
Nano Lett ; 20(9): 6582-6589, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786938

RESUMEN

Suspended specimens of 2D crystals and their heterostructures are required for a range of studies including transmission electron microscopy (TEM), optical transmission experiments, and nanomechanical testing. However, investigating the properties of laterally small 2D crystal specimens, including twisted bilayers and air-sensitive materials, has been held back by the difficulty of fabricating the necessary clean suspended samples. Here we present a scalable solution that allows clean free-standing specimens to be realized with 100% yield by dry-stamping atomically thin 2D stacks onto a specially developed adhesion-enhanced support grid. Using this new capability, we demonstrate atomic resolution imaging of defect structures in atomically thin CrBr3, a novel magnetic material that degrades in ambient conditions.

7.
Chem Soc Rev ; 47(1): 53-68, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29111548

RESUMEN

Designer heterostructures can now be assembled layer-by-layer with unmatched precision thanks to the recently developed deterministic placement methods to transfer two-dimensional (2D) materials. This possibility constitutes the birth of a very active research field on the so-called van der Waals heterostructures. Moreover, these deterministic placement methods also open the door to fabricate complex devices, which would be otherwise very difficult to achieve by conventional bottom-up nanofabrication approaches, and to fabricate fully-encapsulated devices with exquisite electronic properties. The integration of 2D materials with existing technologies such as photonic and superconducting waveguides and fiber optics is another exciting possibility. Here, we review the state-of-the-art of the deterministic placement methods, describing and comparing the different alternative methods available in the literature, and we illustrate their potential to fabricate van der Waals heterostructures, to integrate 2D materials into complex devices and to fabricate artificial bilayer structures where the layers present a user-defined rotational twisting angle.

8.
Nano Lett ; 18(2): 1168-1174, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29323499

RESUMEN

We demonstrate a new design of graphene liquid cell consisting of a thin lithographically patterned hexagonal boron nitride crystal encapsulated on both sides with graphene windows. The ultrathin window liquid cells produced have precisely controlled volumes and thicknesses and are robust to repeated vacuum cycling. This technology enables exciting new opportunities for liquid cell studies, providing a reliable platform for high resolution transmission electron microscope imaging and spectral mapping. The presence of water was confirmed using electron energy loss spectroscopy (EELS) via the detection of the oxygen K-edge and measuring the thickness of full and empty cells. We demonstrate the imaging capabilities of these liquid cells by tracking the dynamic motion and interactions of small metal nanoparticles with diameters of 0.5-5 nm. We further present an order of magnitude improvement in the analytical capabilities compared to previous liquid cell data with 1 nm spatial resolution elemental mapping achievable for liquid encapsulated bimetallic nanoparticles using energy dispersive X-ray spectroscopy (EDXS).

9.
Nano Lett ; 18(9): 5373-5381, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30067903

RESUMEN

Atomically thin black phosphorus (BP) has attracted considerable interest due to its unique properties, such as an infrared band gap that depends on the number of layers and excellent electronic transport characteristics. This material is known to be sensitive to light and oxygen and degrades in air unless protected with an encapsulation barrier, limiting its exploitation in electrical devices. We present a new scalable technique for nanopatterning few layered BP by direct electron beam exposure of encapsulated crystals, achieving a spatial resolution down to 6 nm. By encapsulating the BP with single layer graphene or hexagonal boron nitride (hBN), we show that a focused electron probe can be used to produce controllable local oxidation of BP through nanometre size defects created in the encapsulation layer by the electron impact. We have tested the approach in the scanning transmission electron microscope (STEM) and using industry standard electron beam lithography (EBL). Etched regions of the BP are stabilized by a thin passivation layer and demonstrate typical insulating behavior as measured at 300 and 4.3 K. This new scalable approach to nanopatterning of thin air sensitive crystals has the potential to facilitate their wider use for a variety of sensing and electronics applications.

10.
Nano Lett ; 17(4): 2240-2245, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28211276

RESUMEN

One of the intriguing characteristics of honeycomb lattices is the appearance of a pseudomagnetic field as a result of mechanical deformation. In the case of graphene, the Landau quantization resulting from this pseudomagnetic field has been measured using scanning tunneling microscopy. Here we show that a signature of the pseudomagnetic field is a local sublattice symmetry breaking observable as a redistribution of the local density of states. This can be interpreted as a polarization of graphene's pseudospin due to a strain induced pseudomagnetic field, in analogy to the alignment of a real spin in a magnetic field. We reveal this sublattice symmetry breaking by tunably straining graphene using the tip of a scanning tunneling microscope. The tip locally lifts the graphene membrane from a SiO2 support, as visible by an increased slope of the I(z) curves. The amount of lifting is consistent with molecular dynamics calculations, which reveal a deformed graphene area under the tip in the shape of a Gaussian. The pseudomagnetic field induced by the deformation becomes visible as a sublattice symmetry breaking which scales with the lifting height of the strained deformation and therefore with the pseudomagnetic field strength. Its magnitude is quantitatively reproduced by analytic and tight-binding models, revealing fields of 1000 T. These results might be the starting point for an effective THz valley filter, as a basic element of valleytronics.

11.
Nano Lett ; 16(9): 5798-805, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27466881

RESUMEN

The electrostatic confinement of massless charge carriers is hampered by Klein tunneling. Circumventing this problem in graphene mainly relies on carving out nanostructures or applying electric displacement fields to open a band gap in bilayer graphene. So far, these approaches suffer from edge disorder or insufficiently controlled localization of electrons. Here we realize an alternative strategy in monolayer graphene, by combining a homogeneous magnetic field and electrostatic confinement. Using the tip of a scanning tunneling microscope, we induce a confining potential in the Landau gaps of bulk graphene without the need for physical edges. Gating the localized states toward the Fermi energy leads to regular charging sequences with more than 40 Coulomb peaks exhibiting typical addition energies of 7-20 meV. Orbital splittings of 4-10 meV and a valley splitting of about 3 meV for the first orbital state can be deduced. These experimental observations are quantitatively reproduced by tight binding calculations, which include the interactions of the graphene with the aligned hexagonal boron nitride substrate. The demonstrated confinement approach appears suitable to create quantum dots with well-defined wave function properties beyond the reach of traditional techniques.

12.
Nano Lett ; 13(11): 5242-6, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24156357

RESUMEN

Graphene placed on hexagonal-boron nitride (h-BN) experiences a superlattice (Moiré) potential, which leads to a strong reconstruction of graphene's electronic spectrum with new Dirac points emerging at sub-eV energies. Here we study the effect of such superlattices on graphene's Raman spectrum. In particular, the 2D Raman peak is found to be exquisitely sensitive to the misalignment between graphene and h-BN lattices, probably due to the presence of a strain distribution with the same periodicity of the Moiré potential. This feature can be used to identify graphene superlattices with a misalignment angle smaller than 2°.

14.
Nano Lett ; 12(9): 4629-34, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22935053

RESUMEN

The above question is frequently asked by theorists who are interested in graphene as a model system, especially in context of relativistic quantum physics. We offer an experimental answer by describing electron transport in suspended devices with carrier mobilities of several 10(6) cm(2) V(-1) s(-1) and with the onset of Landau quantization occurring in fields below 5 mT. The observed charge inhomogeneity is as low as ≈10(8) cm(-2), allowing a neutral state with a few charge carriers per entire micrometer-scale device. Above liquid helium temperatures, the electronic properties of such devices are intrinsic, being governed by thermal excitations only. This yields that the Dirac point can be approached within 1 meV, a limit currently set by the remaining charge inhomogeneity. No sign of an insulating state is observed down to 1 K, which establishes the upper limit on a possible bandgap.


Asunto(s)
Grafito/química , Modelos Químicos , Simulación por Computador , Transporte de Electrón , Electricidad Estática
15.
Nano Lett ; 12(3): 1707-10, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22380756

RESUMEN

We investigate the electronic properties of ultrathin hexagonal boron nitride (h-BN) crystalline layers with different conducting materials (graphite, graphene, and gold) on either side of the barrier layer. The tunnel current depends exponentially on the number of h-BN atomic layers, down to a monolayer thickness. Conductive atomic force microscopy scans across h-BN terraces of different thickness reveal a high level of uniformity in the tunnel current. Our results demonstrate that atomically thin h-BN acts as a defect-free dielectric with a high breakdown field. It offers great potential for applications in tunnel devices and in field-effect transistors with a high carrier density in the conducting channel.


Asunto(s)
Compuestos de Boro/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Semiconductores , Conductividad Eléctrica , Transporte de Electrón , Ensayo de Materiales , Tamaño de la Partícula
16.
Analyst ; 137(4): 833-9, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22182964

RESUMEN

We explore and contrast the electroanalytical performance of a commercially available CVD grown graphene electrode with that of edge- and basal-plane pyrolytic graphite electrodes constructed from highly ordered pyrolytic graphite for the sensing of biologically important analytes, namely ß-nicotinamide adenine dinucleotide (NADH) and uric acid (UA). We demonstrate that for the analytes studied here, in the best case, the electroanalytical performance of the CVD-graphene mimics that of edge plane pyrolytic graphite, suggesting no significant advantage of utilising CVD-graphene in this context.

17.
Nano Lett ; 11(6): 2396-9, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21574627

RESUMEN

Devices made from graphene encapsulated in hexagonal boron-nitride exhibit pronounced negative bend resistance and an anomalous Hall effect, which are a direct consequence of room-temperature ballistic transport at a micrometer scale for a wide range of carrier concentrations. The encapsulation makes graphene practically insusceptible to the ambient atmosphere and, simultaneously, allows the use of boron nitride as an ultrathin top gate dielectric.


Asunto(s)
Compuestos de Boro/química , Grafito/química , Temperatura , Electrónica , Propiedades de Superficie
18.
ACS Nano ; 16(2): 1954-1962, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073479

RESUMEN

In stacks of two-dimensional crystals, mismatch of their lattice constants and misalignment of crystallographic axes lead to formation of moiré patterns. We show that moiré superlattice effects persist in twisted bilayer graphene (tBLG) with large twists and short moiré periods. Using angle-resolved photoemission, we observe dramatic changes in valence band topology across large regions of the Brillouin zone, including the vicinity of the saddle point at M and across 3 eV from the Dirac points. In this energy range, we resolve several moiré minibands and detect signatures of secondary Dirac points in the reconstructed dispersions. For twists θ > 21.8°, the low-energy minigaps are not due to cone anticrossing as is the case at smaller twist angles but rather due to moiré scattering of electrons in one graphene layer on the potential of the other which generates intervalley coupling. Our work demonstrates the robustness of the mechanisms which enable engineering of electronic dispersions of stacks of two-dimensional crystals by tuning the interface twist angles. It also shows that large-angle tBLG hosts electronic minigaps and van Hove singularities of different origin which, given recent progress in extreme doping of graphene, could be explored experimentally.

19.
Adv Mater ; 33(29): e2100668, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34105199

RESUMEN

Liquid-phase transmission electron microscopy is used to study a wide range of chemical processes, where its unique combination of spatial and temporal resolution provides countless insights into nanoscale reaction dynamics. However, achieving sub-nanometer resolution has proved difficult due to limitations in the current liquid cell designs. Here, a novel experimental platform for in situ mixing using a specially developed 2D heterostructure-based liquid cell is presented. The technique facilitates in situ atomic resolution imaging and elemental analysis, with mixing achieved within the immediate viewing area via controllable nanofracture of an atomically thin separation membrane. This novel technique is used to investigate the time evolution of calcium carbonate synthesis, from the earliest stages of nanodroplet precursors to crystalline calcite in a single experiment. The observations provide the first direct visual confirmation of the recently developed liquid-liquid phase separation theory, while the technological advancements open an avenue for many other studies of early stage solution-phase reactions of great interest for both the exploration of fundamental science and developing applications.

20.
ACS Nano ; 13(2): 2136-2142, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30676744

RESUMEN

Atomically thin films of III-VI post-transition metal chalcogenides (InSe and GaSe) form an interesting class of two-dimensional semiconductors that feature a strong variation of their band gap as a function of the number of layers in the crystal and, specifically for InSe, an expected crossover from a direct gap in the bulk to a weakly indirect band gap in monolayers and bilayers. Here, we apply angle-resolved photoemission spectroscopy with submicrometer spatial resolution (µARPES) to visualize the layer-dependent valence band structure of mechanically exfoliated crystals of InSe. We show that for one-layer and two-layer InSe the valence band maxima are away from the Γ-point, forming an indirect gap, with the conduction band edge known to be at the Γ-point. In contrast, for six or more layers the band gap becomes direct, in good agreement with theoretical predictions. The high-quality monolayer and bilayer samples enable us to resolve, in the photoluminescence spectra, the band-edge exciton (A) from the exciton (B) involving holes in a pair of deeper valence bands, degenerate at Γ, with a splitting that agrees with both µARPES data and the results of DFT modeling. Due to the difference in symmetry between these two valence bands, light emitted by the A-exciton should be predominantly polarized perpendicular to the plane of the two-dimensional crystal, which we have verified for few-layer InSe crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA