Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biophys J ; 123(14): 2050-2062, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303511

RESUMEN

Proteins are the workhorses of biology, orchestrating a myriad of cellular functions through intricate conformational changes. Protein allostery, the phenomenon where binding of ligands or environmental changes induce conformational rearrangements in the protein, is fundamental to these processes. We have previously shown that transition metal Förster resonance energy transfer (tmFRET) can be used to interrogate the conformational rearrangements associated with protein allostery and have recently introduced novel FRET acceptors utilizing metal-bipyridyl derivatives to measure long (>20 Å) intramolecular distances in proteins. Here, we combine our tmFRET system with fluorescence lifetime measurements to measure the distances, conformational heterogeneity, and energetics of maltose-binding protein, a model allosteric protein. Time-resolved tmFRET captures near-instantaneous snapshots of distance distributions, offering insights into protein dynamics. We show that time-resolved tmFRET can accurately determine distance distributions and conformational heterogeneity of proteins. Our results demonstrate the sensitivity of time-resolved tmFRET in detecting subtle conformational or energetic changes in protein conformations, which are crucial for understanding allostery. In addition, we extend the use of metal-bipyridyl compounds, showing that Cu(phen)2+ can serve as a spin label for pulse dipolar electron paramagnetic resonance (EPR) spectroscopy, a method that also reveals distance distributions and conformational heterogeneity. The EPR studies both establish Cu(phen)2+ as a useful spin label for pulse dipolar EPR and validate our time-resolved tmFRET measurements. Our approach offers a versatile tool for deciphering conformational landscapes and understanding the regulatory mechanisms governing biological processes.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas de Unión a Maltosa , Conformación Proteica , Regulación Alostérica , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/metabolismo , Factores de Tiempo
2.
Biophys J ; 123(14): 2063-2075, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38350449

RESUMEN

With the great progress on determining protein structures over the last decade comes a renewed appreciation that structures must be combined with dynamics and energetics to understand function. Fluorescence spectroscopy, specifically Förster resonance energy transfer (FRET), provides a great window into dynamics and energetics due to its application at physiological temperatures and ability to measure dynamics on the ångström scale. We have recently advanced transition metal FRET (tmFRET) to study allosteric regulation of maltose binding protein and have reported measurements of maltose-dependent distance changes with an accuracy of ∼1.5 Å. When paired with the noncanonical amino acid Acd as a donor, our previous tmFRET acceptors were useful over a working distance of 10 to 20 Å. Here, we use cysteine-reactive bipyridyl and phenanthroline compounds as chelators for Fe2+ and Ru2+ to produce novel tmFRET acceptors to expand the working distance to as long as 50 Å, while preserving our ability to resolve even small maltose-dependent changes in distance. We compare our measured FRET efficiencies to predictions based on models using rotameric ensembles of the donors and acceptors to demonstrate that steady-state measurements of tmFRET with our new probes have unprecedented ability to measure conformational rearrangements under physiological conditions.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Fenantrolinas , Fenantrolinas/química , Ligandos , 2,2'-Dipiridil/química , 2,2'-Dipiridil/análogos & derivados , Maltosa/química , Maltosa/metabolismo , Maltosa/análogos & derivados , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/metabolismo
3.
J Am Chem Soc ; 145(27): 14608-14620, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37364003

RESUMEN

Site-directed spin-labeling (SDSL)─in combination with double electron-electron resonance (DEER) spectroscopy─has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. DEER combined with in situ SDSL in live cells is challenging since current bioorthogonal labeling approaches are too slow to allow for complete labeling with low concentrations of spin label prior to loss of signal from cellular reduction. Here, we overcome this limitation by genetically encoding a novel family of small, tetrazine-bearing noncanonical amino acids (Tet-v4.0) at multiple sites in proteins expressed in Escherichia coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans-cyclooctene (sTCO)-functionalized nitroxides─including a gem-diethyl-substituted nitroxide with enhanced stability in cells─with rate constants that can exceed 106 M-1 s-1. The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro. Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and support assignment of the conformational state of an MBP mutant within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification.


Asunto(s)
Aminoácidos , Compuestos Heterocíclicos , Animales , Humanos , Aminoácidos/química , Marcadores de Spin , Espectroscopía de Resonancia por Spin del Electrón/métodos , Células HEK293 , Proteínas/química , Mamíferos/metabolismo
4.
Mol Vis ; 26: 576-587, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32863706

RESUMEN

Purpose: The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea. Methods: Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and monkey corneas. The expression patterns of TRPV1 and TRPA1 were determined using specific antisera, and further colocalization was performed with antibodies directed against calcitonin-related gene protein (CGRP), neurofilament protein NF200, and the secretogranins ScgII and SCG3. The expression of TRPM8 was determined using corneas from mice expressing EGFP under the direction of a TRPM8 promoter (TRPM8EGFP mice). Laser scanning confocal microscopy and image analysis were performed. Results: In the mouse cornea, TRPV1 and TRPM8 were expressed in distinct populations of small diameter C fibers extending to the corneal surface and ending either as simple or ramifying terminals, or in the case of TRPM8, as complex terminals. TRPA1 was expressed in large-diameter NF200-positive Aδ axons. TRPV1 and TRPA1 appeared to localize to separate intracellular vesicular structures and were primarily found in axons containing components of large dense vesicles with TRPV1 colocalizing with CGRP and ScgII, and TRPA1 colocalizing with SCG3. Monkey corneas showed similar colocalization of CGRP and TRPV1 on small-diameter axons extending to the epithelial surface. Conclusions: The mouse cornea is abundant in sensory neurons expressing TRPV1, TRPM8, and TRPA1, and provides an accessible tissue source for implementing a live tissue preparation useful for further exploration of the molecular mechanisms of hyperalgesia. This study showed that surprisingly, these TRP channels localize to separate neurons in the mouse cornea and likely have unique physiological functions. The similar TRPV1 expression pattern we observed in the mouse and monkey corneas suggests that mice provide a reasonable initial model for understanding the role of these ion channels in higher mammalian corneal physiology.


Asunto(s)
Axones/metabolismo , Córnea/metabolismo , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPV/genética , Animales , Axones/ultraestructura , Cromograninas/genética , Cromograninas/metabolismo , Secuencia Conservada , Córnea/anatomía & histología , Córnea/ultraestructura , Expresión Génica , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Inmunohistoquímica , Macaca nemestrina , Ratones , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Secretogranina II/genética , Secretogranina II/metabolismo , Células Receptoras Sensoriales/ultraestructura , Transmisión Sináptica/genética , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo
5.
Mol Vis ; 26: 392-404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-38860239

RESUMEN

Purpose: The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea. Methods: Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and monkey corneas. The expression patterns of TRPV1 and TRPA1 were determined using specific antisera, and further colocalization was performed with antibodies directed against calcitonin-related gene protein (CGRP), neurofilament protein NF200, and the secretogranins ScgII and SCG3. The expression of TRPM8 was determined using corneas from mice expressing EGFP under the direction of a TRPM8 promoter (TRPM8EGFP mice). Laser scanning confocal microscopy and image analysis were performed. Results: In the mouse cornea, TRPV1 and TRPM8 were expressed in distinct populations of small diameter C fibers extending to the corneal surface and ending either as simple or ramifying terminals, or in the case of TRPM8, as complex terminals. TRPA1 was expressed in large-diameter NF200-positive Aδ axons. TRPV1 and TRPA1 appeared to localize to separate intracellular vesicular structures and were primarily found in axons containing components of large dense vesicles with TRPV1 colocalizing with CGRP and ScgII, and TRPA1 colocalizing with SCG3. Monkey corneas showed similar colocalization of CGRP and TRPV1 on small-diameter axons extending to the epithelial surface. Conclusions: The mouse cornea is abundant in sensory neurons expressing TRPV1, TRPM8, and TRPA1, and provides an accessible tissue source for implementing a live tissue preparation useful for further exploration of the molecular mechanisms of hyperalgesia. This study showed that surprisingly, these TRP channels localize to separate neurons in the mouse cornea and likely have unique physiological functions. The similar TRPV1 expression pattern we observed in the mouse and monkey corneas suggests that mice provide a reasonable initial model for understanding the role of these ion channels in higher mammalian corneal physiology.

6.
J Biol Chem ; 291(19): 9939-47, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26969165

RESUMEN

Cyclic nucleotide-gated (CNG) channels are expressed in rod photoreceptors and open in response to direct binding of cyclic nucleotides. We have previously shown that potentiation of CNGA1 channels by transition metals requires a histidine in the A' helix following the S6 transmembrane segment. Here, we used transition metal ion FRET and patch clamp fluorometry with a fluorescent, noncanonical amino acid (3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap)) to show that the potentiating transition metal Co(2+) binds in or near the A' helix. Adding high-affinity metal-binding sites to the membrane (stearoyl-nitrilotriacetic acid (C18-NTA)) increased potentiation for low Co(2+) concentrations, indicating that the membrane can coordinate metal ions with the A' helix. These results suggest that restraining the A' helix to the plasma membrane potentiates CNGA1 channel opening. Similar interactions between the A' helix and the plasma membrane may underlie regulation of structurally related hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium subfamily H (KCNH) channels by plasma membrane components.


Asunto(s)
Membrana Celular/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Activación del Canal Iónico/fisiología , Animales , Bovinos , Membrana Celular/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Activación del Canal Iónico/efectos de los fármacos , Oocitos/metabolismo , Propionatos/farmacología , Estructura Secundaria de Proteína , Xenopus laevis
7.
Biophys J ; 109(12): 2480-2491, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26682807

RESUMEN

Voltage-sensitive phosphatases (VSPs) are proteins that directly couple changes in membrane electrical potential to inositol lipid phosphatase activity. VSPs thus couple two signaling pathways that are critical for cellular functioning. Although a number of nonmammalian VSPs have been characterized biophysically, mammalian VSPs are less well understood at both the physiological and biophysical levels. In this study, we aimed to address this gap in knowledge by determining whether the VSP from mouse, Mm-VSP, is expressed in the brain and contains a functional voltage-sensing domain (VSD) and a phosphatase domain. We report that Mm-VSP is expressed in neurons and is developmentally regulated. To address whether the functions of the VSD and phosphatase domain are retained in Mm-VSP, we took advantage of the modular nature of these domains and expressed each independently as a chimeric protein in a heterologous expression system. We found that the Mm-VSP VSD, fused to a viral potassium channel, was able to drive voltage-dependent gating of the channel pore. The Mm-VSP phosphatase domain, fused to the VSD of a nonmammalian VSP, was also functional: activation resulted in PI(4,5)P2 depletion that was sufficient to inhibit the PI(4,5)P2-regulated KCNQ2/3 channels. While testing the functionality of the VSD and phosphatase domain, we observed slight differences between the activities of Mm-VSP-based chimeras and those of nonmammalian VSPs. Although the properties of VSP chimeras may not completely reflect the properties of native VSPs, the differences we observed in voltage-sensing and phosphatase activity provide a starting point for future experiments to investigate the function of Mm-VSP and other mammalian VSPs. In conclusion, our data reveal that both the VSD and the lipid phosphatase domain of Mm-VSP are functional, indicating that Mm-VSP likely plays an important role in mouse neurophysiology.


Asunto(s)
Fenómenos Electrofisiológicos , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/enzimología , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Ratones , Datos de Secuencia Molecular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estructura Terciaria de Proteína
8.
J Biol Chem ; 289(16): 10999-11006, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24599956

RESUMEN

Membrane asymmetry is essential for generating second messengers that act in the cytosol and for trafficking of membrane proteins and membrane lipids, but the role of asymmetry in regulating membrane protein function remains unclear. Here we show that the signaling lipid phosphoinositide 4,5-bisphosphate (PI(4,5)P2) has opposite effects on the function of TRPV1 ion channels depending on which leaflet of the cell membrane it resides in. We observed potentiation of capsaicin-activated TRPV1 currents by PI(4,5)P2 in the intracellular leaflet of the plasma membrane but inhibition of capsaicin-activated currents when PI(4,5)P2 was in both leaflets of the membrane, although much higher concentrations of PI(4,5)P2 in the extracellular leaflet were required for inhibition compared with the concentrations of PI(4,5)P2 in the intracellular leaflet that produced activation. Patch clamp fluorometry using a synthetic PI(4,5)P2 whose fluorescence reports its concentration in the membrane indicates that PI(4,5)P2 must incorporate into the extracellular leaflet for its inhibitory effects to be observed. The asymmetry-dependent effect of PI(4,5)P2 may resolve the long standing controversy about whether PI(4,5)P2 is an activator or inhibitor of TRPV1. Our results also underscore the importance of membrane asymmetry and the need to consider its influence when studying membrane proteins reconstituted into synthetic bilayers.


Asunto(s)
Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales Catiónicos TRPV/metabolismo , Antipruriginosos/farmacología , Capsaicina/farmacología , Línea Celular , Membrana Celular/genética , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Canales Catiónicos TRPV/genética
9.
J Neurosci ; 33(12): 5249-60, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23516290

RESUMEN

The ability to detect hot temperatures is critical to maintaining body temperature and avoiding injury in diverse animals from insects to mammals. Zebrafish embryos, when given a choice, actively avoid hot temperatures and display an increase in locomotion similar to that seen when they are exposed to noxious compounds such as mustard oil. Phylogenetic analysis suggests that the single zebrafish ortholog of TRPV1/2 may have arisen from an evolutionary precursor of the mammalian TRPV1 and TRPV2. As opposed to TRPV2, mammalian TRPV1 is essential for environmentally relevant heat sensation. In the present study, we provide evidence that the zebrafish TRPV1 ion channel is also required for the sensation of heat. Contrary to development in mammals, zebrafish TRPV1(+) neurons arise during the first wave of somatosensory neuron development, suggesting a vital importance of thermal sensation in early larval survival. In vitro analysis showed that zebrafish TRPV1 acts as a molecular sensor of environmental heat (≥25°C) that is distinctly lower than the sensitivity of the mammalian form (≥42°C) but consistent with thresholds measured in behavioral assays. Using in vivo calcium imaging with the genetically encoded calcium sensor GCaMP3, we show that TRPV1-expressing trigeminal neurons are activated by heat at behaviorally relevant temperatures. Using knock-down studies, we also show that TRPV1 is required for normal heat-induced locomotion. Our results demonstrate for the first time an ancient role for TRPV1 in the direct sensation of environmental heat and show that heat sensation is adapted to reflect species-dependent requirements in response to environmental stimuli.


Asunto(s)
Calor , Locomoción/fisiología , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Ácidos/farmacología , Secuencia de Aminoácidos , Animales , Conducta Animal/fisiología , Capsaicina/farmacología , Carcinógenos/farmacología , Células HEK293 , Humanos , Sistema de la Línea Lateral/citología , Sistema de la Línea Lateral/fisiología , Datos de Secuencia Molecular , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética , Acetato de Tetradecanoilforbol/farmacología , Nervio Trigémino/citología , Nervio Trigémino/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873384

RESUMEN

Proteins are the workhorses of biology, orchestrating a myriad of cellular functions through intricate conformational changes. Protein allostery, the phenomenon where binding of ligands or environmental changes induce conformational rearrangements in the protein, is fundamental to these processes. We have previously shown that transition metal Förster resonance energy transfer (tmFRET) can be used to interrogate the conformational rearrangements associated with protein allostery and have recently introduced novel FRET acceptors utilizing metal-bipyridyl derivatives to measure long (>20 Å) intramolecular distances in proteins. Here, we combine our tmFRET system with fluorescence lifetime measurements to measure the distances, conformational heterogeneity, and energetics of maltose binding protein (MBP), a model allosteric protein. Time-resolved tmFRET captures near-instantaneous snapshots of distance distributions, offering insights into protein dynamics. We show that time-resolved tmFRET can accurately determine distance distributions and conformational heterogeneity of proteins. Our results demonstrate the sensitivity of time-resolved tmFRET in detecting subtle conformational or energetic changes in protein conformations, which are crucial for understanding allostery. In addition, we extend the use of metal-bipyridyl compounds, showing Cu(phen)2+ can serve as a spin label for pulse dipolar electron paramagnetic resonance (EPR) spectroscopy, a method which also reveals distance distributions and conformational heterogeneity. The EPR studies both establish Cu(phen)2+ as a useful spin label for pulse dipolar EPR and validate our time-resolved tmFRET measurements. Our approach offers a versatile tool for deciphering conformational landscapes and understanding the regulatory mechanisms governing biological processes.

11.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873407

RESUMEN

With the great progress on determining protein structures over the last decade comes a renewed appreciation that structures must be combined with dynamics and energetics to understand function. Fluorescence spectroscopy, specifically Förster resonance energy transfer (FRET), provides a great window into dynamics and energetics due to its application at physiological temperatures and ability to measure dynamics on the ångström scale. We have recently advanced transition metal FRET (tmFRET) to study allosteric regulation of maltose binding protein and have reported measurements of maltose-dependent distance changes with an accuracy of ~1.5 Å. When paired with the noncanonical amino acid Acd as a donor, our previous tmFRET acceptors were useful over a working distance of 10 Å to 20 Å. Here, we use cysteine-reactive bipyridyl and phenanthroline compounds as chelators for Fe2+ and Ru2+ to produce novel tmFRET acceptors to expand the working distance to as long as 50 Å, while preserving our ability to resolve even small maltose-dependent changes in distance. We compare our measured FRET efficiencies to predictions based on models using rotameric ensembles of the donors and acceptors to demonstrate that steady-state measurements of tmFRET with our new probes have unprecedented ability to measure conformational rearrangements under physiological conditions.

12.
Elife ; 122024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162616

RESUMEN

Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.


Asunto(s)
Química Clic , Fosfatidilinositol 3-Quinasas , Transporte de Proteínas , Proteínas Tirosina Quinasas Receptoras , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Transducción de Señal , Membrana Celular/metabolismo , Optogenética , Código Genético , Luz , Animales , Células HEK293
13.
Biophys J ; 105(11): 2485-94, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24314079

RESUMEN

Phosphoinositides are vital for many cellular signaling processes, and therefore a number of approaches to manipulating phosphoinositide levels in cells or excised patches of cell membranes have been developed. Among the most common is the use of "short-chain" phosphoinositides, usually dioctanoyl phosphoinositol phosphates. We use isothermal titration calorimetry to determine partitioning of the most abundant phosphoinositol phosphates, PI(4)P and PI(4,5)P2 into models of the intracellular and extracellular facing leaflets of neuronal plasma membranes. We show that phosphoinositide mole fractions in the lipid membrane reach physiological levels at equilibrium with reasonable solution concentrations. Finally we explore the consequences of our results for cellular electrophysiology. In particular, we find that TRPV1 is more selective for PI(4,5)P2 than PI(4)P and activated by extremely low membrane mole fractions of PIPs. We conclude by discussing how the logic of our work extends to other experiments with short-chain phosphoinositides. For delayed rectifier K(+) channels, consideration of the membrane mole fraction of PI(4,5)P2 lipids with different acyl chain lengths suggests a different mechanism for PI(4,5)P2 regulation than previously proposed. Inward rectifier K(+) channels apparent lack of selectivity for certain short-chain PIPs may require reinterpretation in view of the PIPs different membrane partitioning.


Asunto(s)
Membrana Celular/metabolismo , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Membrana Celular/química , Células HEK293 , Humanos , Liposomas/química , Liposomas/metabolismo , Fosfatos de Fosfatidilinositol/química , Canales de Potasio Shab/metabolismo , Canales Catiónicos TRPV/metabolismo
14.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36747808

RESUMEN

Studying protein structures and dynamics directly in the cellular environments in which they function is essential to fully understand the molecular mechanisms underlying cellular processes. Site-directed spin-labeling (SDSL)-in combination with double electron-electron resonance (DEER) spectroscopy-has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. In-cell DEER spectroscopy on proteins in mammalian cells has thus far not been possible due to the notable challenges of spin-labeling in live cells. In-cell SDSL requires exquisite biorthogonality, high labeling reaction rates and low background signal from unreacted residual spin label. While the bioorthogonal reaction must be highly specific and proceed under physiological conditions, many spin labels display time-dependent instability in the reducing cellular environment. Additionally, high concentrations of spin label can be toxic. Thus, an exceptionally fast bioorthogonal reaction is required that can allow for complete labeling with low concentrations of spin-label prior to loss of signal. Here we utilized genetic code expansion to site-specifically encode a novel family of small, tetrazine-bearing non-canonical amino acids (Tet-v4.0) at multiple sites in green fluorescent protein (GFP) and maltose binding protein (MBP) expressed both in E. coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans -cyclooctene (sTCO)-functionalized nitroxides-including a gem -diethyl-substituted nitroxide with enhanced stability in cells-with rate constants that can exceed 10 6 M -1 s -1 . The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live HEK293T cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide added directly to the culture medium. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro . Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and successfully discerned the conformational state of MBP within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification.

15.
bioRxiv ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37693391

RESUMEN

Receptor tyrosine kinase signaling is characterized by complex webs of interconnected pathways that regulate diverse cellular functions. The complexity of signaling is a barrier to understanding the pathways that control any particular function. In this work, we use a novel combination of approaches and a new click chemistry probe to determine the role of one pathway in regulating cell surface expression of an ion channel and a receptor tyrosine kinase. We applied an optogenetic approach to uncouple activation of the PI3K pathway from other pathways downstream of RTK activation. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the PM in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.

16.
Biophys J ; 103(8): L35-7, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23083725

RESUMEN

It has been hypothesized that cytoskeletal tension prevents large-scale phase separation within cell plasma membranes. Here, we microaspirate giant unilamellar vesicles to determine the effect of mechanical stress on the liquid/liquid miscibility temperature of a membrane composed of a ternary lipid mixture. An increase in tension of 0.1 mN/m induces a decrease in miscibility temperature on the order of a few tenths of a degree K, which validates recent theoretical predictions.


Asunto(s)
Membrana Celular/química , Citoesqueleto/química , Estrés Mecánico , Temperatura , Liposomas Unilamelares/química
17.
J Biol Chem ; 286(11): 9688-98, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21224382

RESUMEN

Although a large number of ion channels are now believed to be regulated by phosphoinositides, particularly phosphoinositide 4,5-bisphosphate (PIP2), the mechanisms involved in phosphoinositide regulation are unclear. For the TRP superfamily of ion channels, the role and mechanism of PIP2 modulation has been especially difficult to resolve. Outstanding questions include: is PIP2 the endogenous regulatory lipid; does PIP2 potentiate all TRPs or are some TRPs inhibited by PIP2; where does PIP2 interact with TRP channels; and is the mechanism of modulation conserved among disparate subfamilies? We first addressed whether the PIP2 sensor resides within the primary sequence of the channel itself, or, as recently proposed, within an accessory integral membrane protein called Pirt. Here we show that Pirt does not alter the phosphoinositide sensitivity of TRPV1 in HEK-293 cells, that there is no FRET between TRPV1 and Pirt, and that dissociated dorsal root ganglion neurons from Pirt knock-out mice have an apparent affinity for PIP2 indistinguishable from that of their wild-type littermates. We followed by focusing on the role of the C terminus of TRPV1 in sensing PIP2. Here, we show that the distal C-terminal region is not required for PIP2 regulation, as PIP2 activation remains intact in channels in which the distal C-terminal has been truncated. Furthermore, we used a novel in vitro binding assay to demonstrate that the proximal C-terminal region of TRPV1 is sufficient for PIP2 binding. Together, our data suggest that the proximal C-terminal region of TRPV1 can interact directly with PIP2 and may play a key role in PIP2 regulation of the channel.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Raíces Nerviosas Espinales/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Fosfatidilinositol 4,5-Difosfato/genética , Unión Proteica , Estructura Terciaria de Proteína , Raíces Nerviosas Espinales/citología , Canales Catiónicos TRPV/genética
18.
Nat Neurosci ; 11(3): 255-61, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18297068

RESUMEN

Some members of the transient receptor potential (TRP) family of cation channels mediate sensory responses to irritant substances. Although it is well known that TRPA1 channels are activated by pungent compounds found in garlic, onion, mustard and cinnamon extracts, activation of TRPV1 by these extracts remains controversial. Here we establish that TRPV1 is activated by pungent extracts from onion and garlic, as well as by allicin, the active compound in these preparations, and participates together with TRPA1 in the pain-related behavior induced by this compound. We found that in TRPV1 these agents act by covalent modification of cysteine residues. In contrast to TRPA1 channels, modification of a single cysteine located in the N-terminal region of TRPV1 was necessary and sufficient for all the effects we observed. Our findings point to a conserved mechanism of activation in TRP channels, which provides new insights into the molecular basis of noxious stimuli detection.


Asunto(s)
Allium/química , Dolor/inducido químicamente , Dolor/metabolismo , Extractos Vegetales/farmacología , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Secuencia de Aminoácidos/fisiología , Animales , Línea Celular , Secuencia Conservada , Cisteína/química , Disulfuros , Evolución Molecular , Femenino , Ajo/química , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Cebollas/química , Estructura Terciaria de Proteína , Ácidos Sulfínicos/farmacología , Canales Catiónicos TRPV/química
19.
J Neurosci ; 30(40): 13338-47, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20926660

RESUMEN

TRPV2 is a member of the transient receptor potential family of ion channels involved in chemical and thermal pain transduction. Unlike the related TRPV1 channel, TRPV2 does not appear to bind either calmodulin or ATP in its N-terminal ankyrin repeat domain. In addition, it does not contain a calmodulin-binding site in the distal C-terminal region, as has been proposed for TRPV1. We have found that TRPV2 channels transiently expressed in F-11 cells undergo Ca(2+)-dependent desensitization, similar to the other TRPVs, suggesting that the mechanism of desensitization may be conserved in the subfamily of TRPV channels. TRPV2 desensitization was not altered in whole-cell recordings in the presence of calmodulin inhibitors or on coexpression of mutant calmodulin but was sensitive to changes in membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)), suggesting a role of membrane PIP(2) in TRPV2 desensitization. Simultaneous confocal imaging and electrophysiological recording of cells expressing TRPV2 and a fluorescent PIP(2)-binding probe demonstrated that TRPV2 desensitization was concomitant with depletion of PIP(2). We conclude that the decrease in PIP(2) levels on channel activation underlies a major component of Ca(2+)-dependent desensitization of TRPV2 and may play a similar role in other TRP channels.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/fisiología , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Regulación hacia Abajo/fisiología , Humanos , Hidrólisis/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Microscopía Confocal , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/antagonistas & inhibidores , Fosfatidilinositol 4,5-Difosfato/fisiología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Canales Catiónicos TRPV/antagonistas & inhibidores
20.
Elife ; 102021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34623258

RESUMEN

With the recent explosion in high-resolution protein structures, one of the next frontiers in biology is elucidating the mechanisms by which conformational rearrangements in proteins are regulated to meet the needs of cells under changing conditions. Rigorously measuring protein energetics and dynamics requires the development of new methods that can resolve structural heterogeneity and conformational distributions. We have previously developed steady-state transition metal ion fluorescence resonance energy transfer (tmFRET) approaches using a fluorescent noncanonical amino acid donor (Anap) and transition metal ion acceptor to probe conformational rearrangements in soluble and membrane proteins. Here, we show that the fluorescent noncanonical amino acid Acd has superior photophysical properties that extend its utility as a donor for tmFRET. Using maltose-binding protein (MBP) expressed in mammalian cells as a model system, we show that Acd is comparable to Anap in steady-state tmFRET experiments and that its long, single-exponential lifetime is better suited for probing conformational distributions using time-resolved FRET. These experiments reveal differences in heterogeneity in the apo and holo conformational states of MBP and produce accurate quantification of the distributions among apo and holo conformational states at subsaturating maltose concentrations. Our new approach using Acd for time-resolved tmFRET sets the stage for measuring the energetics of conformational rearrangements in soluble and membrane proteins in near-native conditions.


Asunto(s)
Cobre/química , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Unión a Maltosa/metabolismo , beta-Alanina/análogos & derivados , Secuencia de Aminoácidos , Fluorometría , Células HEK293 , Humanos , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Modelos Químicos , Mutación , Conformación Proteica en Hélice alfa , Relación Estructura-Actividad , Factores de Tiempo , beta-Alanina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA