Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 35(7): e4692, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35040195

RESUMEN

Cardiac motion results in image artefacts and quantification errors in many cardiovascular magnetic resonance (CMR) techniques, including microstructural assessment using diffusion tensor cardiovascular magnetic resonance (DT-CMR). Here, we develop a CMR-compatible isolated perfused porcine heart model that allows comparison of data obtained in beating and arrested states. Ten porcine hearts (8/10 for protocol optimisation) were harvested using a donor heart retrieval protocol and transported to the remote CMR facility. Langendorff perfusion in a 3D-printed chamber and perfusion circuit re-established contraction. Hearts were imaged using cine, parametric mapping and STEAM DT-CMR at cardiac phases with the minimum and maximum wall thickness. High potassium and lithium perfusates were then used to arrest the heart in a slack and contracted state, respectively. Imaging was repeated in both arrested states. After imaging, tissue was removed for subsequent histology in a location matched to the DT-CMR data using fiducial markers. Regular sustained contraction was successfully established in six out of 10 hearts, including the final five hearts. Imaging was performed in four hearts and one underwent the full protocol, including colocalised histology. The image quality was good and there was good agreement between DT-CMR data in equivalent beating and arrested states. Despite the use of autologous blood and dextran within the perfusate, T2 mapping results, DT-CMR measures and an increase in mass were consistent with development of myocardial oedema, resulting in failure to achieve a true diastolic-like state. A contiguous stack of 313 5-µm histological sections at and a 100-µm thick section showing cell morphology on 3D fluorescent confocal microscopy colocalised to DT-CMR data were obtained. A CMR-compatible isolated perfused beating heart setup for large animal hearts allows direct comparisons of beating and arrested heart data with subsequent colocalised histology, without the need for onsite preclinical facilities.


Asunto(s)
Trasplante de Corazón , Animales , Corazón/diagnóstico por imagen , Humanos , Imagen por Resonancia Cinemagnética , Espectroscopía de Resonancia Magnética , Miocardio/patología , Porcinos , Donantes de Tejidos
2.
Magn Reson Med ; 81(3): 1580-1594, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30408238

RESUMEN

PURPOSE: Diffusion tensor cardiovascular magnetic resonance (DT-CMR) has a limited spatial resolution. The purpose of this study was to demonstrate high-resolution DT-CMR using a segmented variable density spiral sequence with correction for motion, off-resonance, and T2*-related blurring. METHODS: A single-shot stimulated echo acquisition mode (STEAM) echo-planar-imaging (EPI) DT-CMR sequence at 2.8 × 2.8 × 8 mm3 and 1.8 × 1.8 × 8 mm3 was compared to a single-shot spiral at 2.8 × 2.8 × 8 mm3 and an interleaved spiral sequence at 1.8 × 1.8 × 8 mm3 resolution in 10 healthy volunteers at peak systole and diastasis. Motion-induced phase was corrected using the densely sampled central k-space data of the spirals. STEAM field maps and T2* measures were obtained using a pair of stimulated echoes each with a double spiral readout, the first used to correct the motion-induced phase of the second. RESULTS: The high-resolution spiral sequence produced similar DT-CMR results and quality measures to the standard-resolution sequence in both cardiac phases. Residual differences in fractional anisotropy and helix angle gradient between the resolutions could be attributed to spatial resolution and/or signal-to-noise ratio. Data quality increased after both motion-induced phase correction and off-resonance correction, and sharpness increased after T2* correction. The high-resolution EPI sequence failed to provide sufficient data quality for DT-CMR reconstruction. CONCLUSION: In this study, an in vivo DT-CMR acquisition at 1.8 × 1.8 mm2 in-plane resolution was demonstrated using a segmented spiral STEAM sequence. Motion-induced phase and off-resonance corrections are essential for high-resolution spiral DT-CMR. Segmented variable density spiral STEAM was found to be the optimal method for acquiring high-resolution DT-CMR data.


Asunto(s)
Imagen de Difusión Tensora , Imagen Eco-Planar , Frecuencia Cardíaca , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Algoritmos , Anisotropía , Imagen de Difusión por Resonancia Magnética , Femenino , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Análisis de los Mínimos Cuadrados , Masculino , Persona de Mediana Edad , Movimiento (Física) , Relación Señal-Ruido , Sístole , Adulto Joven
3.
Magn Reson Med ; 80(2): 648-654, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29266435

RESUMEN

PURPOSE: Diffusion tensor cardiovascular MR (DT-CMR) using stimulated echo acquisition mode (STEAM) with echo-planar-imaging (EPI) readouts is a low signal-to-noise-ratio (SNR) technique and therefore typically has a low spatial resolution. Spiral trajectories are more efficient than EPI, and could increase the SNR. The purpose of this study was to compare the performance of a novel STEAM spiral DT-CMR sequence with an equivalent established EPI technique. METHODS: A STEAM DT-CMR sequence was implemented with a spiral readout and a reduced field of view. An in vivo comparison of DT-CMR parameters and data quality between EPI and spiral was performed in 11 healthy volunteers imaged in peak systole and diastasis at 3 T. The SNR was compared in a phantom and in vivo. RESULTS: There was a greater than 49% increase in the SNR in vivo and in the phantom measurements (in vivo septum, systole: SNREPI = 8.0 ± 2.2, SNRspiral = 12.0 ± 2.7; diastasis: SNREPI = 8.1 ± 1.6, SNRspiral = 12.0 ± 3.7). There were no significant differences in helix angle gradient (HAG) (systole: HAGEPI = -0.79 ± 0.07 °/%; HAGspiral = -0.74 ± 0.16 °/%; P = 0.11; diastasis: HAGEPI = -0.63 ± 0.05 °/%; HAGspiral = -0.56 ± 0.14 °/%; P = 0.20), mean diffusivity (MD) in systole (MDEPI = 0.99 ± 0.06 × 10-3 mm2 /s, MDspiral = 1.00 ± 0.09 × 10-3 mm2 /s, P = 0.23) and secondary eigenvector angulation (E2A) (systole: E2AEPI = 61 ± 10 °; E2Aspiral = 63 ± 10 °; P = 0.77; diastasis: E2AEPI = 18 ± 11 °; E2Aspiral = 15 ± 8 °; P = 0.20) between the sequences. There was a small difference (≈ 20%) in fractional anisotropy (FA) (systole: FAEPI = 0.49 ± 0.03, FAspiral = 0.41 ± 0.04; P < 0.01; diastasis: FAEPI = 0.66 ± 0.05, FAspiral = 0.55 ± 0.03; P < 0.01) and mean diffusivity in diastasis (10%; MDEPI = 1.00 ± 0.12 × 10-3 mm2 /s, MDspiral = 1.10 ± 0.09 × 10-3 mm2 /s, P = 0.02). CONCLUSION: This is the first study to demonstrate DT-CMR STEAM using a spiral trajectory. The SNR was increased by using a spiral rather than the more established EPI readout, and the DT-CMR parameters were largely similar between the two sequences. Magn Reson Med 80:648-654, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Imagen de Difusión Tensora/métodos , Imagen Eco-Planar/métodos , Corazón/diagnóstico por imagen , Adulto , Anciano , Algoritmos , Diástole/fisiología , Femenino , Corazón/fisiología , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Relación Señal-Ruido , Sístole/fisiología , Adulto Joven
4.
Diagnostics (Basel) ; 14(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893675

RESUMEN

BACKGROUND: Silent MRA has shown promising results in evaluating the stents used for intracranial aneurysm treatment. A deep learning-based denoising and deranging algorithm was recently introduced by GE HealthCare. The purpose of this study was to compare the performance of several MRA techniques regarding lumen visibility in silicone models with flow diverter stents. METHODS: Two Surpass Evolve stents of different sizes were implanted in two silicone tubes. The tubes were placed in separate boxes in the straight position and in two different curve configurations and connected to a pulsatile pump to construct a flow loop. Using a 3.0T MRI scanner, TOF and silent MRA images were acquired, and deep learning reconstruction was applied to the silent MRA dataset. The intraluminal signal intensity in the stent (SIin-stent), in the tube outside the stent (SIvessel), and of the background (SIbg) were measured for each scan. RESULTS: The SIin-stent/SIbg and SIin-stent/SIv ratios were higher in the silent scans and DL-based reconstructions than in the TOF images. The stent tips created severe artefacts in the TOF images, which could not be observed in the silent scans. CONCLUSIONS: Our study demonstrates that the DL reconstruction algorithm improves the quality of the silent MRA technique in evaluating the flow diverter stent patency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA