Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 61(13-14): 3082-6, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16165056

RESUMEN

The theoretically predicted water-oxygen van der Waals adduct has been experimentally confirmed by vibrational characterization using matrix isolation spectroscopic studies at 10 K. Vibrational bands for asymmetric and symmetric OH-stretching for this adduct have been found at 3728 cm(-1) and 3639 cm(-1), respectively. Theoretical calculations performed with Gaussian 98 software at the MP2/6-311++G(2d,2p) level of theory support the alternative structure of the hydrated complex proposed by this study.


Asunto(s)
Atmósfera/química , Oxígeno/química , Agua/química , Modelos Químicos , Espectroscopía Infrarroja por Transformada de Fourier
2.
Appl Spectrosc ; 58(5): 528-34, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15165328

RESUMEN

Photolysis (350-450 nm) of NO(2) molecules trapped in argon matrices at 10 K has been studied using Fourier transform infrared (FTIR) spectroscopy to examine the mobility of the photolysis products, O((3)P) and NO, and their subsequent reactions. The formation of N(2)O(5) and N(2)O(3) from reactions of these mobile species with immobilized NO(2) and N(2)O(4) is confirmed. Water molecules from the background gases in the vacuum have been found to be isolated in the argon matrix during deposition of diluted NO(2) in Ar. The entrapped water molecules along with some of their NO(2) adducts have been characterized. Exposure of the matrix to photons to photolyze NO() resulted in not only internal matrix reactions, but also an enhanced deposition of ice over the surface of the argon matrix. This is caused by photodesorption of water molecules from the walls of the matrix isolation chamber and their subsequent condensation on the matrix surface. This ice overlayer has been found to give a very significant dangling OH band and a substantial librational band in the FT-IR spectra, indicating substantial surface area and internal porosity, respectively. The potential of using photodesorbed water to establish high surface area ice interfaces with dangling OH groups for heterogeneous photoreaction studies is discussed.

3.
Appl Spectrosc ; 58(10): 1236-42, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15527525

RESUMEN

To demonstrate the development of an oxygen atom microreactor in the form of liquid-helium-cooled solid argon matrix deposited on an infrared (IR) window, the oxidation of ethylene by mobile O atoms has been investigated. O atom diffusion through the argon matrix is confirmed and used to examine ethylene-oxygen atom reactions. In a bench-scale matrix isolation system probed with a Fourier transform infrared (FT-IR) spectrometer, matrices of solid Ar at 8-10 K doped with NO2 and ethylene have been prepared on a ZnSe window within an evacuated cryostat. The matrices have been photolyzed using 350-450 nm photons, and the reaction products resulting from the reaction of O(3P), one of the photolysis products of NO2, with ethylene have been identified using FT-IR and a Gaussian 98W simulation program. These products include oxirane, acetaldehyde, ethyl nitrite radical, and ketene. The temperature effect in the range of 10-30 K on the products formed has also been investigated. The reaction mechanisms are discussed and the viability of the solid Ar matrix being a low temperature microreactor to examine reaction mechanisms of mobile oxygen atoms is elaborated.


Asunto(s)
Argón/química , Etilenos/química , Oxígeno/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Biología , Investigación Biomédica , Simulación por Computador , Miniaturización , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA