Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(13): e2318713121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498706

RESUMEN

Chirality is a geometric property describing the lack of mirror symmetry. This unique feature enables photonic spin-selectivity in light-matter interaction, which is of great significance in stereochemistry, drug development, quantum optics, and optical polarization control. The versatile control of optical geometry renders optical metamaterials as an effective platform for engineered chiral properties at prescribed spectral regimes. Unfortunately, geometry-imposed restrictions only allow one circular polarization state of photons to effectively interact with chiral meta-structures. This limitation motivates the idea of discovering alternative techniques for dynamically reconfiguring the chiroptical responses of metamaterials in a fast and facile manner. Here, we demonstrate an approach that enables optical, sub-picosecond conversion of achiral meta-structures to transient chiral media in the visible regime with desired handedness upon the inhomogeneous generation of plasmonic hot electrons. As a proof of concept, we utilize linearly polarized laser pulse to demonstrate near-complete conversion of spin sensitivity in an achiral meta-platform-a functionality yet achieved in a non-mechanical fashion. Owing to the generation, diffusion, and relaxation dynamics of hot electrons, the demonstrated technique for all-optical creation of chirality is inherently fast, opening new avenues for ultrafast spectro-temporal construction of chiral platforms with on-demand spin-selectivity.

2.
J Hazard Mater ; 458: 131809, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343405

RESUMEN

An airtight, anoxic bubble-column sequencing batch reactor (SBR) was developed for the rapid cultivation of perchlorate (ClO4-) and nitrate (NO3-) reducing granular sludge (GS) in this study. Feast/famine conditions and shear force selection pressures in tandem with a short settling time (2-min) as a hydraulic section pressure resulted in the accelerated formation of anoxic granular activated sludge (AxGS). ClO4- and NO3- were efficiently (>99.9%) reduced over long-term (>500-d) steady-state operation. Specific NO3- reduction, ClO4- reduction, chloride production, and non-purgeable dissolved organic carbon (DOC) oxidation rates of 5.77 ± 0.54 mg NO3--N/g VSS·h, 8.13 ± 0.74 mg ClO4-/g VSS·h, 2.40 ± 0.40 mg Cl-/g VSS·h, and 16.0 ± 0.06 mg DOC/g VSS·h were recorded within the reactor under steady-state conditions, respectively. The AxGS biomass cultivated in this study exhibited faster specific ClO4- reduction, NO3- reduction, and DOC oxidation rates than flocculated biomass cultivated under similar conditions and AxGS biomass operated in an up-flow anaerobic sludge blank (UASB) bioreactor receiving the same influent loading. EPS peptide identification revealed a suite of extracellular catabolic enzymes. Dechloromonas species were present in high abundance throughout the entirety of this study. This is one of the initial studies on anoxic granulation to simultaneously treat hazardous chemicals and adds to the science of the granular activated sludge process.


Asunto(s)
Nitratos , Aguas del Alcantarillado , Percloratos , Compuestos Orgánicos/metabolismo , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo
3.
Bioresour Technol ; 385: 129367, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37394045

RESUMEN

This study employed a completely anoxic reactor and a gravity-settling design for continuously capturing and separating granules from flocculated biomass, and recycling granules back to the main reactor. The average chemical oxygen demand (COD) removal in the reactor was 98%. Average nitrate (NO3--N) and perchlorate (ClO4-) removal efficiencies of 99% and 74 ± 19% were observed, respectively. Preferential utilization of NO3- over ClO4- led to COD limiting conditions, which resulted in ClO4- in the effluent. The average granule diameter in continuous flow-through bubble-column (CFB) anoxic granular sludge (AxGS) bioreactor was 6325 ± 2434 µm, and the average SVI30/SVI1 was >90 % throughout its operation. 16s rDNA amplicon sequencing revealed Proteobacteria (68.53%-88.57%) and Dechloromonas (10.46%-54.77%) to be the most abundant phylum and the genus present in reactor sludge representing the denitrifying and ClO4- reducing microbial community. This work represents a pioneering development of CFB-AxGS bioreactor.


Asunto(s)
Desnitrificación , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Percloratos , Nitratos , Reactores Biológicos/microbiología , Nitrógeno
4.
Chemosphere ; 336: 138984, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315862

RESUMEN

Enhanced hydrolysis of sludges during fermentation is an important factor to achieve solubilization of complex carbon sources and increase the amount of soluble COD that microorganisms could use as food during biological nutrient removal processes. This research shows that a combination of mixing, bioaugmentation, and co-fermentation can be used to increase the hydrolysis of sludges and enhanced the production of volatile fatty acids (VFA). Mixing of primary sludge (PS) at 350 revolutions per minute (RPM) during fermentation increased the hydrolysis of the sludge and increased the soluble chemical oxygen demand (sCOD) by 72% compared to no mixing. Mixing also increased the production of VFA by 60% compared to no mixing conditions. PS hydrolysis was also evaluated using bioaugmentation with the bacteria Bacillus amyloliquefacients, a known producer of the biosurfactant surfactin. Results showed that bioaugmentation enhanced the hydrolysis of the PS by increasing the amount of soluble carbohydrates and soluble proteins present in the form of sCOD. Methanogenesis experiments performed with co-fermentation of decanted primary sludge (PS) and raw waste-activated sludge (WAS) at 75:25 and 50:50 ratios displayed a decreased in production of total biogas by 25.58% and 20.95% and a reduction on methane production by 20.00% and 28.76% respectively, compared to co-fermentation of raw sludges. Compared to fermentation of the sludges separately, co-fermentation of PS and WAS increased the production of VFA and it was determined that 50:50 was the optimum co-fermentation ratio for production of VFA while reducing the reintroduction of nutrients produced during the fermentation process to BNR processes.


Asunto(s)
Ácidos Grasos Volátiles , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles/metabolismo , Fermentación , Nutrientes , Reactores Biológicos
5.
Adv Sci (Weinh) ; 10(8): e2205434, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36658727

RESUMEN

Ultrafast optical switching in plasmonic platforms relies on the third-order Kerr nonlinearity, which is tightly linked to the dynamics of hot carriers in nanostructured metals. Although extensively utilized, a fundamental understanding on the dependence of the switching dynamics upon optical resonances has often been overlooked. Here, all-optical control of resonance bands in a hybrid photonic-plasmonic crystal is employed as an empowering technique for probing the resonance-dependent switching dynamics upon hot carrier formation. Differential optical transmission measurements reveal an enhanced switching performance near the anti-crossing point arising from strong coupling between local and nonlocal resonance modes. Furthermore, entangled with hot-carrier dynamics, the nonlinear correspondence between optical resonances and refractive index change results in tailorable dispersion of recovery speeds which can notably deviate from the characteristic lifetime of hot carriers. The comprehensive understanding provides new protocols for optically characterizing hot-carrier dynamics and optimizing resonance-based all-optical switches for operations across the visible spectrum.

6.
Sci Rep ; 13(1): 2368, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759577

RESUMEN

This study experimentally investigated the evaporation and wetting transition behavior of fakir droplets on five different microstructured surfaces. Diamond-like carbon was introduced as the substrate, and the influence of varying the width, height, and pitch of the micropillars was assessed. The experimental results showed that the interfacial properties of the surfaces change the evaporation behavior and the starting point of the wetting transition. An important result of this study is the demonstration of a slippery superhydrophobic surface with low depinning force that suppresses the transition from the Cassie-Baxter state to the Wenzel state for microdroplets less than 0.37 mm in diameter, without employing large pillar height or multiscale roughness. By selecting an appropriate pillar pitch and employing tapered micropillars with small pillar widths, the solid-liquid contact at the three-phase contact line was reduced and low depinning forces were obtained. The underlying mechanism by which slippery superhydrophobic surfaces suppress wetting transitions is also discussed. The accuracy of the theoretical models for predicting the critical transition parameters was assessed, and a numerical model was developed in the surface evolver to compute the penetration of the droplet bottom meniscus within the micropillars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA