Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Chem Biol ; 19(6): 778-789, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36864192

RESUMEN

Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.


Asunto(s)
Ecosistema , Mucinas , Mucinas/metabolismo , Polisacáridos/metabolismo , Bacterias/metabolismo
2.
Appl Environ Microbiol ; 88(2): e0143721, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34731055

RESUMEN

Human milk oligosaccharides (HMOs), which are natural bifidogenic prebiotics, were recently commercialized to fortify formula milk. However, HMO assimilation phenotypes of bifidobacteria vary by species and strain, which has not been fully linked to strain genotype. We have recently shown that specialized uptake systems, particularly for the internalization of major HMOs (fucosyllactose [FL]), are associated with the formation of a Bifidobacterium-rich gut microbial community. Phylogenetic analysis revealed that FL transporters have diversified into two clades harboring four clusters within the Bifidobacterium genus, but the underpinning functional diversity associated with this divergence remains underexplored. In this study, we examined the HMO consumption phenotypes of two bifidobacterial species, Bifidobacterium catenulatum subsp. kashiwanohense and Bifidobacterium pseudocatenulatum, both of which possess FL-binding proteins that belong to phylogenetic clusters with unknown specificities. Growth assays, heterologous gene expression experiments, and HMO consumption analyses showed that the FL transporter type from B. catenulatum subsp. kashiwanohense JCM 15439T conferred a novel HMO uptake pattern that includes complex fucosylated HMOs (lacto-N-fucopentaose II and lacto-N-difucohexaose I/II). Further genomic landscape analyses of FL transporter-positive bifidobacterial strains revealed that the H-antigen- or Lewis antigen-specific fucosidase gene(s) and FL transporter specificities were largely aligned. These results suggest that bifidobacteria have acquired FL transporters along with the corresponding gene sets necessary to utilize the imported HMOs. Our results provide insight into the species- and strain-dependent adaptation strategies of bifidobacteria in HMO-rich environments. IMPORTANCE The gut of breastfed infants is generally dominated by health-promoting bifidobacteria. Human milk oligosaccharides (HMOs) from breast milk selectively promote the growth of specific taxa such as bifidobacteria, thus forming an HMO-mediated host-microbe symbiosis. While the coevolution of humans and bifidobacteria has been proposed, the underpinning adaptive strategies employed by bifidobacteria require further research. Here, we analyzed the divergence of the critical fucosyllactose (FL) HMO transporter within Bifidobacterium. We have shown that the diversification of the solute-binding proteins of the FL transporter led to uptake specificities of fucosylated sugars ranging from simple trisaccharides to complex hexasaccharides. This transporter and the congruent acquisition of the necessary intracellular enzymes allow bifidobacteria to consume different types of HMOs in a predictable and strain-dependent manner. These findings explain the adaptation and proliferation of bifidobacteria in the competitive and HMO-rich infant gut environment and enable accurate specificity annotation of transporters from metagenomic data.


Asunto(s)
Bifidobacterium , Leche Humana , Bifidobacterium/metabolismo , Humanos , Lactante , Metagenoma , Metagenómica , Leche Humana/metabolismo , Oligosacáridos/metabolismo , Filogenia
3.
J Biol Chem ; 291(5): 2260-9, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26631727

RESUMEN

Nitrate (NO3(-)) and nitrite (NO2(-)) are the physiological sources of nitric oxide (NO), a key biological messenger molecule. NO3(-)/NO2(-) exerts a beneficial impact on NO homeostasis and its related cardiovascular functions. To visualize the physiological dynamics of NO3(-)/NO2(-) for assessing the precise roles of these anions, we developed a genetically encoded intermolecular fluorescence resonance energy transfer (FRET)-based indicator, named sNOOOpy (sensor for NO3(-)/NO2(-) in physiology), by employing NO3(-)/NO2(-)-induced dissociation of NasST involved in the denitrification system of rhizobia. The in vitro use of sNOOOpy shows high specificity for NO3(-) and NO2(-), and its FRET signal is changed in response to NO3(-)/NO2(-) in the micromolar range. Furthermore, both an increase and decrease in cellular NO3(-) concentration can be detected. sNOOOpy is very simple and potentially applicable to a wide variety of living cells and is expected to provide insights into NO3(-)/NO2(-) dynamics in various organisms, including plants and animals.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Regulación de la Expresión Génica , Nitratos/química , Nitritos/química , Rhizobium , Sitios de Unión , Técnicas Biosensibles , Bradyrhizobium , Desnitrificación , Células HeLa , Humanos , Mutación , Óxido Nítrico , Nitrógeno/química , Raíces de Plantas/microbiología , Mapeo de Interacción de Proteínas , Transducción de Señal
4.
Biosci Biotechnol Biochem ; 81(2): 283-291, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27832720

RESUMEN

We have recently generated a highly efficient 1,2-α-l-fucosynthase (BbAfcA N423H mutant) by protein engineering of 1,2-α-l-fucosidase from Bifidobacterium bifidum JCM 1254. This synthase could specifically introduce H-antigens (Fucα1-2Gal) into the non-reducing ends of oligosaccharides and in O-linked glycans in mucin glycoprotein. In the present study, we show an extended application of the engineered 1,2-α-l-fucosynthase by demonstrating its ability to insert Fuc residues into N- and O-glycans in fetuin glycoproteins, GM1 ganglioside, and a plant-derived xyloglucan nonasaccharide. This application study broadens the feasibility of this novel H-antigen synthesis technique in functional glycomics.


Asunto(s)
Disacáridos/química , Disacáridos/metabolismo , Fucosa/química , Gangliósidos/química , Glucanos/química , Oligosacáridos/química , Xilanos/química , alfa-L-Fucosidasa/metabolismo , Asialoglicoproteínas/metabolismo , Bifidobacterium/enzimología , Fetuínas/metabolismo , Fucosa/metabolismo , Gangliósidos/metabolismo , Glucanos/metabolismo , Glucolípidos/química , Glucolípidos/metabolismo , Mutación , Oligosacáridos/metabolismo , Plantas/química , Ingeniería de Proteínas , Xilanos/metabolismo , alfa-L-Fucosidasa/genética
5.
Biosci Biotechnol Biochem ; 81(10): 2018-2027, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28814130

RESUMEN

Human gut symbiont bifidobacteria possess carbohydrate-degrading enzymes that act on the O-linked glycans of intestinal mucins to utilize those carbohydrates as carbon sources. However, our knowledge about mucin type O-glycan degradation by bifidobacteria remains fragmentary, especially regarding how they decompose sulfated glycans, which are abundantly found in mucin sugar-chains. Here, we examined the abilities of several Bifidobacterium strains to degrade a sulfated glycan substrate and identified a 6-sulfo-ß-d-N-acetylglucosaminidase, also termed sulfoglycosidase, encoded by bbhII from Bifidobacterium bifidum JCM 7004. A recombinant BbhII protein showed a substrate preference toward 6-sulfated and 3,4-disulfated N-acetylglucosamines over non-sulfated and 3-sulfated N-acetylglucosamines. The purified BbhII directly released 6-sulfated N-acetylglucosamine from porcine gastric mucin and the expression of bbhII was moderately induced in the presence of mucin. This de-capping activity may promote utilization of sulfated glycans of mucin by other bacteria including bifidobacteria, thereby establishing the symbiotic relationship between human and gut microbes.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Bifidobacterium bifidum/enzimología , Mucinas/metabolismo , Polisacáridos/metabolismo , Acetilglucosaminidasa/química , Acetilglucosaminidasa/genética , Secuencia de Aminoácidos , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Regulación Bacteriana de la Expresión Génica
6.
Biosci Biotechnol Biochem ; 81(10): 2009-2017, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28782454

RESUMEN

Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fermentación , Microbioma Gastrointestinal , Anaerobiosis , Bacterias/genética , Simulación por Computador , Técnicas de Cultivo , ADN Bacteriano/genética , Genómica
7.
Glycobiology ; 26(11): 1235-1247, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27550195

RESUMEN

Fucα1-2 Gal linkages, or H-antigens, constitute histo-blood group antigens and are involved in various physiological processes. In addition, recent studies have shown that the H-antigen-containing glycans play an important role, not only in establishing harmonious relationship between gut microbes and the host, but also in preventing gut dysbiosis-related diseases. Therefore, development of an efficient method for introducing Fuc residue at Gal residue at the nonreducing end of glycans via α-(1→2) linkage is desired for research as well as medicinal purposes. In this study, we succeeded in derivatizing inverting 1,2-α-l-fucosidase (AfcA) into a highly efficient 1,2-α-l-fucosynthase. The synthase specifically synthesized H type 1-, type 2-, type 3- and type 4-chain-containing oligosaccharides with yields of 57-75% based on acceptor depletion. The synthase was also able to specifically introduce Fuc residues into Lewis a/x antigens to produce Lewis b/y antigens, with yields of 43% and 62%, respectively. In addition, the enzyme efficiently introduced H-antigens into sugar chains of porcine gastric mucins, as revealed by lectin blotting and mass spectroscopy analysis of the sugars. Detailed acceptor specificity analysis using various monosaccharides and oligosaccharides unraveled unique substrate recognition feature of this synthase at the subsite (+1), which can be explained by our previous X-ray crystallographic study of AfcA. These results show that the synthase developed in this study could serve as an alternative to other H-antigen synthesis methods involving α-1,2-fucosyltransferases and retaining α-fucosidase.


Asunto(s)
Antígenos Bacterianos/metabolismo , Glicoproteínas/metabolismo , Oligosacáridos/metabolismo , Azúcares/metabolismo , alfa-L-Fucosidasa/metabolismo , Antígenos Bacterianos/química , Bifidobacterium bifidum/enzimología , Biocatálisis , Conformación de Carbohidratos , Glicoproteínas/química , Modelos Moleculares , Oligosacáridos/química , Azúcares/química
8.
J Biol Chem ; 288(48): 34699-706, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24151073

RESUMEN

Neurons undergo several morphological changes as a part of normal neuron maturation process. Alzheimer disease is associated with increased neuroproliferation and impaired neuronal maturation. In this study, we demonstrated that Gas7b (growth arrest specific protein 7b) expression in a neuronal cell line, Neuro 2A, induces cell maturation by facilitating formation of dendrite-like processes and/or filopodia projections and that Gas7b co-localizes with neurite microtubules. Molecular analysis was performed to evaluate whether Gas7b associates with actin filaments and microtubules, and the data revealed two novel roles of Gas7b in neurite outgrowth: we showed that Gas7b enhances bundling of several microtubule filaments and connects microtubules with actin filaments. These results suggest that Gas7b governs neural cell morphogenesis by enhancing the coordination between actin filaments and microtubules. We conclude that lower neuronal Gas7b levels may impact Alzheimer disease progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Diferenciación Celular , Línea Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Humanos , Microscopía Electrónica , Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/genética , Neuronas/citología
9.
Environ Microbiol ; 16(10): 3263-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24947409

RESUMEN

The soybean endosymbiont Bradyrhizobium japonicum is able to scavenge the greenhouse gas N2O through the N2O reductase (Nos). In previous research, N2O emission from soybean rhizosphere was mitigated by B. japonicum Nos(++) strains (mutants with increased Nos activity). Here, we report the mechanism underlying the Nos(++) phenotype. Comparative analysis of Nos(++) mutant genomes showed that mutation of bll4572 resulted in Nos(++) phenotype. bll4572 encodes NasS, the nitrate (NO3(-))-sensor of the two-component NasST regulatory system. Transcriptional analyses of nosZ (encoding Nos) and other genes from the denitrification process in nasS and nasST mutants showed that, in the absence of NO3(-) , nasS mutation induces nosZ and nap (periplasmic nitrate reductase) via nasT. NO3(-) addition dissociated the NasS-NasT complex in vitro, suggesting the release of the activator NasT. Disruption of nasT led to a marked decrease in nosZ and nap transcription in cells incubated in the presence of NO3(-). Thus, although NasST is known to regulate the NO3(-)-mediated response of NO3(-) assimilation genes in bacteria, our results show that NasST regulates the NO3(-) -mediated response of nosZ and napE genes, from the dissimilatory denitrification pathway, in B. japonicum.


Asunto(s)
Proteínas Bacterianas/genética , Bradyrhizobium/enzimología , Bradyrhizobium/genética , Regulación Bacteriana de la Expresión Génica , Nitrato-Reductasa/genética , Nitratos/metabolismo , Oxidorreductasas/genética , Bradyrhizobium/metabolismo , Desnitrificación , Regulación Enzimológica de la Expresión Génica , Genoma Bacteriano , Proteínas de Transporte de Membrana/genética , Mutación , Oxidorreductasas/metabolismo , Periplasma/enzimología , Proteínas de Unión al ARN/genética , Rizosfera , Glycine max/microbiología
10.
Biol Reprod ; 91(2): 53, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25031361

RESUMEN

Neurotensin (NT) has multiple functions, ranging from acting as a neurotransmitter to regulating intestinal movement. However, its function in reproductive physiology is unknown. Here, we confirmed the expression and localization of NT receptors (NTR1) in mouse epididymal spermatozoa and investigated the effect of NT on sperm function. Sperm protein tyrosine phosphorylation, one of the indices of sperm capacitation, was facilitated dose-dependently by NT administration. In addition, the acrosome reaction was promoted in capacitated spermatozoa, and addition of a selective antagonist of NTR1 and NTR2 blocked the induction. Furthermore, intracellular calcium mobilization by NT addition was observed. This showed that NT was an accelerator of sperm function via its functional receptors. The presence of NT was confirmed by immunohistochemistry and its localization was observed in epithelia of the uterus and oviduct isthmus and ampulla, which correspond to the fertilization route of spermatozoa. The NT mRNA level in ovulated cumulus cell was remarkably increased by treatment with human chorionic gonadotropin (hCG). Using an in vitro maturation model, we analyzed the effects of FSH, epidermal growth factor (EGF), estradiol, and progesterone in NT production in cumulus cells. We found that FSH and EGF upregulated NT release and mRNA expression. Both FSH- and EGF-induced upregulation were inhibited by U0126, an MAPK kinase inhibitor, indicating that FSH and EGF regulate NT expression via a MAPK-dependent pathway. This evidence suggests that NT can act as a promoter of sperm capacitation and the acrosome reaction in the female reproductive tract.


Asunto(s)
Reacción Acrosómica/fisiología , Neurotensina/farmacología , Receptores de Neurotensina/metabolismo , Capacitación Espermática/efectos de los fármacos , Animales , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Trompas Uterinas/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Neurotensina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Neurotensina/genética , Capacitación Espermática/fisiología , Espermatozoides/fisiología , Útero/metabolismo
11.
Microbiome Res Rep ; 2(3): 20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046823

RESUMEN

Aim: Bifidobacterium longum subsp. infantis uses a glycoside hydrolase (GH) family 42 ß-galactosidase (BiBga42A) for hydrolyzing lacto-N-tetraose (LNT), which is the most abundant core structure of human milk oligosaccharides (HMOs). As such, BiBga42A represents one of the pivotal enzymes underpinning the symbiosis between bifidobacteria and breastfed infants. Despite its importance, the structural basis underlying LNT hydrolysis by BiBga42A is not understood. Moreover, no substrate-complexed structures are available to date for GH42 family members. Methods: X-ray crystallography was used to determine the structures of BiBga42A in the apo- and liganded forms. The roles of the amino acid residues that were presumed to be involved in catalysis and substrate recognition were examined by a mutational study, in which kinetic parameters of each mutant were determined using 4-nitrophenyl-ß-D-galactoside, lacto-N-biose I, LNT, and lacto-N-neotetraose (LNnT) as substrates. Conservation of those amino acid residues was examined among structure-determined GH42 ß-galactosidases. Results: Crystal structures of the wild-type enzyme complexed with glycerol, the E160A/E318A double mutant complexed with galactose (Gal), and the E318S mutant complexed with LNT were determined at 1.7, 1.9, and 2.2 Å resolutions, respectively. The LNT molecule (excluding the Gal moiety at subsite +2) bound to the E318S mutant is recognized by an extensive hydrogen bond network and several hydrophobic interactions. The non-reducing end Gal moiety of LNT adopts a slightly distorted conformation and does not overlap well with the Gal molecule bound to the E160A/E318A mutant. Twelve of the sixteen amino acid residues responsible for LNT recognition and catalysis in BiBga42A are conserved among all homologs including ß-1,6-1,3-galactosidase (BlGal42A) from Bifidobacterium animalis subsp. lactis. Conclusion: BlGal42A is active on 3-ß-galactobiose similarly to BiBga42A but is inactive on LNT. Interestingly, we found that the entrance of the catalytic pocket of BlGal42A is narrower than that of BiBga42A and seems not easily accessible from the solvent side due to the presence of two bulky amino acid side chains. The specificity difference may reflect the structural difference between the two enzymes.

12.
Front Microbiol ; 14: 1155438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125172

RESUMEN

Examining how host cells affect metabolic behaviors of probiotics is pivotal to better understand the mechanisms underlying the probiotic efficacy in vivo. However, studies to elucidate the interaction between probiotics and host cells, such as intestinal epithelial cells, remain limited. Therefore, in this study, we performed a comprehensive metabolome analysis of a co-culture containing Bifidobacterium breve MCC1274 and induced pluripotent stem cells (iPS)-derived small intestinal-like cells. In the co-culture, we observed a significant increase in several amino acid metabolites, including indole-3-lactic acid (ILA) and phenyllactic acid (PLA). In accordance with the metabolic shift, the expression of genes involved in ILA synthesis, such as transaminase and tryptophan synthesis-related genes, was also elevated in B. breve MCC1274 cells. ILA production was enhanced in the presence of purines, which were possibly produced by intestinal epithelial cells (IECs). These findings suggest a synergistic action of probiotics and IECs, which may represent a molecular basis of host-probiotic interaction in vivo.

13.
Elife ; 122023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150375

RESUMEN

Microbiota consisting of various fungi and bacteria have a significant impact on the physiological functions of the host. However, it is unclear which species are essential to this impact and how they affect the host. This study analyzed and isolated microbes from natural food sources of Drosophila larvae, and investigated their functions. Hanseniaspora uvarum is the predominant yeast responsible for larval growth in the earlier stage of fermentation. As fermentation progresses, Acetobacter orientalis emerges as the key bacterium responsible for larval growth, although yeasts and lactic acid bacteria must coexist along with the bacterium to stabilize this host-bacterial association. By providing nutrients to the larvae in an accessible form, the microbiota contributes to the upregulation of various genes that function in larval cell growth and metabolism. Thus, this study elucidates the key microbial species that support animal growth under microbial transition.


Asunto(s)
Drosophila , Levaduras , Animales , Larva , Filogenia , Levaduras/metabolismo , Bacterias/genética , Fermentación
14.
Microbiome Res Rep ; 1(3): 20, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38046362

RESUMEN

Aim: 16S rRNA gene-based microbiota analyses (16S metagenomes) using next-generation sequencing (NGS) technologies are widely used to examine the microbial community composition in environmental samples. However, the sequencing capacity of NGS is sometimes insufficient to cover the whole microbial community, especially when analyzing soil and fecal microbiotas. This limitation may have hampered the detection of minority species that potentially affect microbiota formation and structure. Methods: We developed a simple method, termed 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer), that not only enhances minority species detection but also increases the accuracy of their abundance estimation. The method relies on the inhibition of normal amplicon formation of the 16S rRNA gene of a target major (abundant) species during the first PCR step. The addition of a biotinylated primer that is complementary to the variable sequence of the V3-V4 region of the target species inhibits a normal amplification process to form an aberrant short amplicon. The fragment is then captured by streptavidin beads for removal from the reaction mixture, and the resulting mixture is utilized for the second PCR with barcode-tag primers. Thus, this method only requires two additional experimental procedures to the conventional 16S metagenome analysis. A proof-of-concept experiment was first conducted using a mock sample consisting of the genomes of 14 bacterial species. Then, the method was applied to infant fecal samples using a Bifidobacterium-specific inhibitory primer (n = 11). Results: As a result, the reads assigned to the family Bifidobacteriaceae decreased on average from 16,657 to 1718 per sample without affecting the total read counts (36,073 and 34,778 per sample for the conventional and DRIP methods, respectively). Furthermore, the minority species detection rate increased with neither affecting Bray-Curtis dissimilarity calculated by omitting the target Bifidobacterium species (median: 0.049) nor changing the relative abundances of the non-target species. While 115 amplicon sequence variants (ASVs) were unique to the conventional method, 208 ASVs were uniquely detected for the DRIP method. Moreover, the abundance estimation for minority species became more accurate, as revealed thorough comparison with the results of quantitative PCR analysis. Conclusion: The 16S metagenome-DRIP method serves as a useful technique to grasp a deeper and more accurate microbiota composition when combined with conventional 16S metagenome analysis methods.

15.
Gut Microbes ; 14(1): 2128605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36217238

RESUMEN

Colonic luminal aromatic amines have been historically considered to be derived from dietary source, especially fermented foods; however, recent studies indicate that the gut microbiota serves as an alternative source of these amines. Herein, we show that five prominent genera of Firmicutes (Blautia, Clostridium, Enterococcus, Ruminococcus, and Tyzzerella) have the ability to abundantly produce aromatic amines through the action of aromatic amino acid decarboxylase (AADC). In vitro cultivation of human fecal samples revealed that a significant positive correlation between aadc copy number of Ruminococcus gnavus and phenylethylamine (PEA) production. Furthermore, using genetically engineered Enterococcus faecalis-colonized BALB/cCrSlc mouse model, we showed that the gut bacterial aadc stimulates the production of colonic serotonin, which is reportedly involved in osteoporosis and irritable bowel syndrome. Finally, we showed that human AADC inhibitors carbidopa and benserazide inhibit PEA production in En. faecalis.


Asunto(s)
Carbidopa , Microbioma Gastrointestinal , Animales , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Benserazida/farmacología , Humanos , Ratones , Fenetilaminas , Serotonina/metabolismo
16.
ISME J ; 16(9): 2265-2279, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35768643

RESUMEN

Bifidobacteria are among the first colonizers of the infant gut, and human milk oligosaccharides (HMOs) in breastmilk are instrumental for the formation of a bifidobacteria-rich microbiota. However, little is known about the assembly of bifidobacterial communities. Here, by applying assembly theory to a community of four representative infant-gut associated Bifidobacterium species that employ varied strategies for HMO consumption, we show that arrival order and sugar consumption phenotypes significantly affected community formation. Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, two avid HMO consumers, dominate through inhibitory priority effects. On the other hand, Bifidobacterium breve, a species with limited HMO-utilization ability, can benefit from facilitative priority effects and dominates by utilizing fucose, an HMO degradant not utilized by the other bifidobacterial species. Analysis of publicly available breastfed infant faecal metagenome data showed that the observed trends for B. breve were consistent with our in vitro data, suggesting that priority effects may have contributed to its dominance. Our study highlights the importance and history dependency of initial community assembly and its implications for the maturation trajectory of the infant gut microbiota.


Asunto(s)
Bifidobacterium , Microbioma Gastrointestinal , Bifidobacterium/genética , Heces/microbiología , Humanos , Lactante , Leche Humana/química , Oligosacáridos
17.
Cell Rep ; 40(11): 111332, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103838

RESUMEN

Clostridioides difficile causes nosocomial antibiotic-associated diarrhea on a global scale. Susceptibility to C. difficile infection (CDI) is influenced by the composition and metabolism of gut microbiota, which in turn are affected by diet. However, the mechanism underlying the interplay between diet and gut microbiota that modulates susceptibility to CDI remains unclear. Here, we show that a soy protein diet increases the mortality of antibiotic-treated, C. difficile-infected mice while also enhancing the intestinal levels of amino acids (aas) and relative abundance of Lactobacillus genus. Indeed, Ligilactobacillus murinus-mediated fermentation of soy protein results in the generation of aas, thereby promoting C. difficile growth, and the process involves the anchored cell wall proteinase PrtP. Thus, mutual interaction between dietary protein and the gut microbiota is a critical factor affecting host susceptibility to CDI, suggesting that dietary protein sources can be an important determinant in controlling the disease.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Animales , Antibacterianos , Proteínas en la Dieta , Ratones , Proteínas de Soja
18.
Gut Microbes ; 13(1): 1973835, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34553672

RESUMEN

Certain existing prebiotics meant to facilitate the growth of beneficial bacteria in the intestine also promote the growth of other prominent bacteria. Therefore, the growth-promoting effects of ß-galactosides on intestinal bacteria were analyzed. Galactosyl-ß1,4-l-rhamnose (Gal-ß1,4-Rha) selectively promoted the growth of Bifidobacterium. Bifidobacterium longum subsp. longum 105-A (JCM 31944) has multiple solute-binding proteins belonging to ATP-binding cassette transporters for sugars. Each strain in the library of 11 B. longum subsp. longum mutants, in which each gene of the solute-binding protein was disrupted, was cultured in a medium containing Gal-ß1,4-Rha as the sole carbon source, and only the BL105A_0502 gene-disruption mutant showed delayed and reduced growth compared to the wild-type strain. BL105A_0502 homolog is highly conserved in bifidobacteria. In a Gal-ß1,4-Rha-containing medium, Bifidobacterium longum subsp. infantis JCM 1222T, which possesses BLIJ_2090, a homologous protein to BL105A_0502, suppressed the growth of enteric pathogen Clostridioides difficile, whereas the BLIJ_2090 gene-disrupted mutant did not. In vivo, administration of B. infantis and Gal-ß1,4-Rha alleviated C. difficile infection-related weight loss in mice. We have successfully screened Gal-ß1,4-Rha as a next-generation prebiotic candidate that specifically promotes the growth of beneficial bacteria without promoting the growth of prominent bacteria and pathogens.


Asunto(s)
Bifidobacterium longum subspecies infantis/crecimiento & desarrollo , Bifidobacterium/crecimiento & desarrollo , Clostridioides difficile/crecimiento & desarrollo , Disacáridos/farmacología , Prebióticos/análisis , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Bifidobacterium/genética , Bifidobacterium longum subspecies infantis/genética , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL
19.
J Biol Chem ; 284(47): 32695-9, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19801671

RESUMEN

Here, we report a novel role for hGas7b (human growth arrest specific protein 7b) in the regulation of microtubules. Using a bioinformatic approach, we studied the actin-binding protein hGas7b with a structural similarity to the WW domain of a peptidyl prolyl cis/trans isomerase, Pin1, that facilitates microtubule assembly. Thus, we have demonstrated that hGas7b binds Tau at the WW motif and that the hGas7b/Tau protein complex interacts with the microtubules, promoting tubulin polymerization. Tau, in turn, contributes to protein stability of hGas7b. Furthermore, we observed decreased levels of hGas7b in the brains from patients with Alzheimer disease. These results suggest an important role for hGas7b in microtubular maintenance and possible implication in Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas de Microfilamentos/fisiología , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas tau/química , Secuencias de Aminoácidos , Animales , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Biología Computacional , ADN Complementario/metabolismo , Bases de Datos de Proteínas , Humanos , Ratones , Proteínas de Microfilamentos/biosíntesis , Modelos Biológicos , Proteínas del Tejido Nervioso/biosíntesis , Tubulina (Proteína)/química
20.
Microorganisms ; 8(4)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231096

RESUMEN

Certain species of the genus Bifidobacterium represent human symbionts. Many studies have shown that the establishment of symbiosis with such bifidobacterial species confers various beneficial effects on human health. Among the more than ten (sub)species of human gut-associated Bifidobacterium that have significantly varied genetic characteristics at the species level, Bifidobacterium bifidum is unique in that it is found in the intestines of a wide age group, ranging from infants to adults. This species is likely to have adapted to efficiently degrade host-derived carbohydrate chains, such as human milk oligosaccharides (HMOs) and mucin O-glycans, which enabled the longitudinal colonization of intestines. The ability of this species to assimilate various host glycans can be attributed to the possession of an adequate set of extracellular glycoside hydrolases (GHs). Importantly, the polypeptides of those glycosidases frequently contain carbohydrate-binding modules (CBMs) with deduced affinities to the target glycans, which is also a distinct characteristic of this species among members of human gut-associated bifidobacteria. This review firstly describes the prevalence and distribution of B. bifidum in the human gut and then explains the enzymatic machinery that B. bifidum has developed for host glycan degradation by referring to the functions of GHs and CBMs. Finally, we show the data of co-culture experiments using host-derived glycans as carbon sources, which underpin the interesting altruistic behavior of this species as a cross-feeder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA