Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(11): e2114205119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259017

RESUMEN

SignificanceIntracellular gradients have essential roles in cell and developmental biology, but their formation is not fully understood. We have developed a computational approach facilitating interpretation of protein dynamics and gradient formation. We have combined this computational approach with experiments to understand how Polo-Like Kinase 1 (PLK-1) forms a cytoplasmic gradient in Caenorhabditis elegans embryos. Although the PLK-1 gradient depends on the Muscle EXcess-5/6 (MEX-5/6) proteins, we reveal differences in PLK-1 and MEX-5 gradient formation that can be explained by a model with two components, PLK-1 bound to MEX-5 and unbound PLK-1. Our combined approach suggests that a weak coupling between PLK-1 and MEX-5 reaction-diffusion mechanisms dictates the dynamic exchange of PLK-1 with the cytoplasm, explaining PLK-1 high diffusivity and smooth gradient.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteoma , Proteómica , Animales , Embrión no Mamífero , Modelos Biológicos , Método de Montecarlo , Morfogénesis , Proteínas Serina-Treonina Quinasas , Transporte de Proteínas , Proteómica/métodos
2.
PLoS Biol ; 19(7): e3000968, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228701

RESUMEN

Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Proteína A Centromérica/genética , Centrómero , Impresión Genómica , Células Germinativas , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína A Centromérica/química , Proteína A Centromérica/metabolismo , Cromatina/metabolismo , Cromosomas , Femenino , Homocigoto , Cinetocoros , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Dominios Proteicos
3.
PLoS Genet ; 17(11): e1009599, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34807903

RESUMEN

microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential "prion-like" domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59's localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , MicroARNs/fisiología , Biosíntesis de Proteínas/fisiología , Gránulos de Estrés/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Procesamiento Postranscripcional del ARN
4.
J Cell Sci ; 134(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34661238

RESUMEN

When exposed to stressful conditions, eukaryotic cells respond by inducing the formation of cytoplasmic ribonucleoprotein complexes called stress granules. Here, we use C. elegans to study two proteins that are important for stress granule assembly in human cells - PQN-59, the human UBAP2L ortholog, and GTBP-1, the human G3BP1 and G3BP2 ortholog. Both proteins assemble into stress granules in the embryo and in the germline when C. elegans is exposed to stressful conditions. Neither of the two proteins is essential for the assembly of stress-induced granules, as shown by the single and combined depletions by RNAi, and neither pqn-59 nor gtbp-1 mutant embryos show higher sensitivity to stress than control embryos. We find that pqn-59 mutants display reduced progeny and a high percentage of embryonic lethality, phenotypes that are not dependent on stress exposure and that are not shared with gtbp-1 mutants. Our data indicate that, in contrast to human cells, PQN-59 and GTBP-1 are not required for stress granule formation but that PQN-59 is important for C. elegans development.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans , Gránulos de Estrés , Animales , Caenorhabditis elegans/genética , Proteínas Portadoras , ADN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN
5.
Adv Exp Med Biol ; 1002: 93-124, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28600784

RESUMEN

Microtubules are the backbone of all eukaryotic cells cytoskeleton. Their dynamic behaviour constitutes the basis for many biological processes such as cellular motility, cytoplasmic transport and cell division. Some the most effective chemotherapeutics, such as the taxanes, are microtubule interfering drugs. Moreover, many studies suggest that microtubule dynamics are altered in cancer cell divisions and linked to chromosomal instability, aneuploidy and development of drug resistances. The elephant in the room, however, is that despite all these evidences, the exact role of microtubules in malignancies remains elusive, partially due to the lack of clear genetic alterations linking microtubules to cancer. This review will discuss the molecular mechanisms that might alter microtubule dynamics in cancer cells, the pro and cons of the different theories linking these alterations to cancer progression, and the possible directions to address future key questions.


Asunto(s)
Transformación Celular Neoplásica/patología , Microtúbulos/patología , Mitosis , Neoplasias/patología , Aneuploidia , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Inestabilidad Cromosómica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fenotipo
6.
Dev Biol ; 373(1): 26-38, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23064028

RESUMEN

Cell polarity is crucial for many aspects of cell and developmental biology. Cytoskeleton remodeling plays an essential role in the establishment of cell polarity. In the Caenorhabditis elegans one-cell embryo, while the actomyosin cytoskeleton is required for asymmetric localization of the PAR proteins, anterior PAR proteins exert a feedback regulation on contractility. Here we identify the TAO kinase KIN-18 as a regulator of cortical contractility in the early embryo. KIN-18 negatively regulates cortical contractions in a RHO-1 dependent manner and regulates RHO-1 cortical localization. KIN-18 contributes to polarity establishment by regulating the position of the boundary between anterior and posterior PAR proteins. Although KIN-18 is involved in polarity establishment, depletion of KIN-18 restores contractions in a par-3 mutant indicating that kin-18 is epistatic to par-3. We suggest a model in which KIN-18 provides a link between the cytoskeleton remodeling and polarity machineries, uncovering a role for TAO kinases in the regulation of cell polarity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Ciclo Celular/fisiología , Polaridad Celular/fisiología , Citoesqueleto/fisiología , Proteínas Quinasas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Ciclo Celular/genética , Polaridad Celular/genética , Citoesqueleto/genética , Epistasis Genética/genética , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Microscopía de Interferencia , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas , Interferencia de ARN , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rho/metabolismo
7.
Trends Cell Biol ; 34(2): 122-135, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37574346

RESUMEN

Molecules inside cells are subject to physical forces and undergo biochemical interactions, continuously changing their physical properties and dynamics. Despite this, cells achieve highly ordered molecular patterns that are crucial to regulate various cellular functions and to specify cell fate. In the Caenorhabditis elegans one-cell embryo, protein asymmetries are established in the narrow time window of a cell division. What are the mechanisms that allow molecules to establish asymmetries, defying the randomness imposed by Brownian motion? Mathematical and computational models have paved the way to the understanding of protein dynamics up to the 'single-molecule level' when resolution represents an issue for precise experimental measurements. Here we review the models that interpret cortical and cytoplasmic asymmetries in the one-cell C. elegans embryo.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , División Celular , Citoplasma/metabolismo , Polaridad Celular , Embrión no Mamífero
8.
J Cell Biol ; 223(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652117

RESUMEN

Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.


Asunto(s)
Proteínas Portadoras , Membrana Nuclear , Poro Nuclear , Humanos , Transporte Activo de Núcleo Celular , Células HeLa , Homeostasis , Glicoproteínas de Membrana , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Portadoras/metabolismo
9.
Development ; 137(19): 3315-25, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20823068

RESUMEN

During asymmetric cell division, cell polarity and cell cycle progression are tightly coordinated, yet mechanisms controlling both these events are poorly understood. Here we show that the Bora homologue SPAT-1 regulates both PAR polarity and cell cycle progression in C. elegans embryos. We find that, similarly to mammalian cells, SPAT-1 acts with PLK-1 and not with the mitotic kinase Aurora A (AIR-1), as shown in Drosophila. SPAT-1 binds to PLK-1, and depletion of SPAT-1 or PLK-1 leads to similar cell division defects in early embryos, which differ from the defects caused by depletion of AIR-1. Additionally, SPAT-1 and PLK-1 depletion causes impaired polarity with abnormal length of the anterior and posterior PAR domains, and partial plk-1(RNAi) or spat-1(RNAi), but not air-1(RNAi), can rescue the lethality of a par-2 mutant. SPAT-1 is enriched in posterior cells, and this enrichment depends on PAR polarity and PLK-1. Taken together, our data suggest a model in which SPAT-1 promotes the activity of PLK-1 to regulate both cell polarity and cell cycle timing during asymmetric cell division, providing a link between these two processes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Polaridad Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Quinasa Tipo Polo 1
10.
Nature ; 450(7173): 1258-62, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18097415

RESUMEN

During division of metazoan cells, the nucleus disassembles to allow chromosome segregation, and then reforms in each daughter cell. Reformation of the nucleus involves chromatin decondensation and assembly of the double-membrane nuclear envelope around the chromatin; however, regulation of the process is still poorly understood. In vitro, nucleus formation requires p97 (ref. 3), a hexameric ATPase implicated in membrane fusion and ubiquitin-dependent processes. However, the role and relevance of p97 in nucleus formation have remained controversial. Here we show that p97 stimulates nucleus reformation by inactivating the chromatin-associated kinase Aurora B. During mitosis, Aurora B inhibits nucleus reformation by preventing chromosome decondensation and formation of the nuclear envelope membrane. During exit from mitosis, p97 binds to Aurora B after its ubiquitylation and extracts it from chromatin. This leads to inactivation of Aurora B on chromatin, thus allowing chromatin decondensation and nuclear envelope formation. These data reveal an essential pathway that regulates reformation of the nucleus after mitosis and defines ubiquitin-dependent protein extraction as a common mechanism of Cdc48/p97 activity also during nucleus formation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Animales , Aurora Quinasas , Caenorhabditis elegans , Proteínas de Ciclo Celular/genética , Núcleo Celular/enzimología , Femenino , Masculino , Membrana Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Interferencia de ARN , Ubiquitina/metabolismo , Ubiquitinación , Proteína que Contiene Valosina , Xenopus laevis
11.
J Cell Sci ; 123(Pt 16): 2717-24, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20663921

RESUMEN

LA-related protein 1 (LARP-1) belongs to an RNA-binding protein family containing a LA motif. Here, we identify LARP-1 as a regulator of sex determination. In C. elegans hermaphrodites, a complex regulatory network regulates the switch from sperm to oocyte production. We find that simultaneous depletion of larp-1 and the Nanos homologue nos-3 results in germline masculinization. This phenotype is accompanied by a strong reduction of the levels of TRA-1, a GLI-family transcription factor that promotes oogenesis. TRA-1 levels are regulated by CBC(FEM-1), a ubiquitin ligase consisting of the FEM proteins, FEM-1, FEM-2 and FEM-3 and the cullin CUL-2. We show that both the masculinization phenotype and the reduction of TRA-1 levels observed in nos-3;larp-1 mutants require fem-3 activity, suggesting that nos-3 and larp-1 regulate the sperm-oocyte switch by inhibiting the fem genes. Consistently, fem-3 mRNA levels are increased in larp-1 mutants. By contrast, levels of fem-3 mRNA are not affected in nos-3 mutants. Therefore, our data indicate that LARP-1 and NOS-3 promote oogenesis by regulating fem-3 expression through distinct mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Oogénesis/fisiología , Proteínas de Unión al ARN/metabolismo , Procesos de Determinación del Sexo/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Femenino , Sistema de Señalización de MAP Quinasas , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mutación , Oocitos/fisiología , Oogénesis/genética , Filogenia , Espermatozoides/fisiología
12.
Curr Opin Cell Biol ; 17(6): 658-63, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16243504

RESUMEN

The generation of daughter cells of different fate and size depends on the orientation, positioning and morphology of the mitotic spindle. In both C. elegans and Drosophila, heterotrimeric G proteins have emerged as central and conserved regulators of this process. Although the same molecular players are involved in worms and flies, there are clear differences in the mechanisms used. Interestingly, recent work in mammalian cells suggests that heterotrimeric G proteins may control spindle positioning in higher organisms during symmetric and asymmetric cell divisions.


Asunto(s)
División Celular/fisiología , Tamaño de la Célula , Proteínas de Unión al GTP Heterotriméricas/fisiología , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/fisiología , Humanos , Transducción de Señal , Huso Acromático/química
13.
J Cell Biol ; 179(1): 15-22, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17908918

RESUMEN

Proper orientation and positioning of the mitotic spindle is essential for the correct segregation of fate determinants during asymmetric cell division. Although heterotrimeric G proteins and their regulators are essential for spindle positioning in many cell types, their mechanism of action remains unclear. In this study, we show that dyrb-1, which encodes a dynein light chain, provides a functional link between heterotrimeric G protein signaling and dynein activity during spindle positioning in Caenorhabditis elegans. Embryos depleted of dyrb-1 display phenotypes similar to a weak loss of function of dynein activity, indicating that DYRB-1 is a positive regulator of dynein. We find that the depletion of dyrb-1 enhances the spindle positioning defect of weak loss of function alleles of two regulators of G protein signaling, LIN-5 and GPR-1/2, and that DYRB-1 physically associates with these two proteins. These results indicate that dynein activity functions with regulators of G protein signaling to regulate common downstream effectors during spindle positioning in the early C. elegans embryo.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/fisiología , Transducción de Señal , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Dineínas/antagonistas & inhibidores , Dineínas/fisiología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Proteínas Fluorescentes Verdes/análisis , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Modelos Biológicos , Interferencia de ARN , Proteínas Recombinantes de Fusión/análisis , Huso Acromático/ultraestructura
14.
J Cell Biol ; 221(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36083688

RESUMEN

Cell polarity relies on the asymmetric distribution of the conserved PAR proteins, which is regulated by phosphorylation/dephosphorylation reactions. While the kinases involved have been well studied, the role of phosphatases remains poorly understood. In Caenorhabditis elegans zygotes, phosphorylation of the posterior PAR-2 protein by the atypical protein kinase PKC-3 inhibits PAR-2 cortical localization. Polarity establishment depends on loading of PAR-2 at the posterior cortex. We show that the PP1 phosphatases GSP-1 and GSP-2 are required for polarity establishment in embryos. We find that codepletion of GSP-1 and GSP-2 abrogates the cortical localization of PAR-2 and that GSP-1 and GSP-2 interact with PAR-2 via a PP1 docking motif in PAR-2. Mutating this motif in vivo, to prevent binding of PAR-2 to PP1, abolishes cortical localization of PAR-2, while optimizing this motif extends PAR-2 cortical localization. Our data suggest a model in which GSP-1/-2 counteracts PKC-3 phosphorylation of PAR-2, allowing its cortical localization at the posterior and polarization of the one-cell embryo.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Monoéster Fosfórico Hidrolasas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular , Embrión no Mamífero/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Quinasa C/metabolismo
16.
Dev Cell ; 8(5): 629-33, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15926249

RESUMEN

Researchers working on cell polarity and cytoskeletal processes met at a Keystone meeting in Coeur d'Alene, Idaho in March to present and discuss the newest findings in these rapidly moving fields. The unexpectedly warm weather and the lack of snow favored discussions at this very interactive meeting. To fill the 6 hr break in the afternoon, walks in the beautiful surroundings and shopping trips were organized, during which microtubules, PAR proteins, and small G proteins were the guests of honor.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/fisiología , Animales , División Celular/fisiología , Movimiento Celular/fisiología , Citoesqueleto/inmunología , Proteínas Asociadas a Microtúbulos/fisiología , Centro Organizador de los Microtúbulos/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/fisiología , Transducción de Señal
17.
Curr Biol ; 30(4): 698-707.e6, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31956030

RESUMEN

Stress granules (SGs) are membraneless organelles that form in eukaryotic cells after stress exposure [1] (reviewed in [2-4]). Following translation inhibition, polysome disassembly releases 48S preinitiation complexes (PICs). mRNA, PICs, and other proteins coalesce in SG cores [1, 5-7]. SG cores recruit a dynamic shell, whose properties are dominated by weak interactions between proteins and RNAs [8-10]. The structure and assembly of SGs and how different components contribute to their formation are not fully understood. Using super-resolution and expansion microscopy, we find that the SG component UBAP2L [11, 12] and the core protein G3BP1 [5, 11-13] occupy different domains inside SGs. UBAP2L displays typical properties of a core protein, indicating that cores of different compositions coexist inside the same granule. Consistent with a role as a core protein, UBAP2L is required for SG assembly in several stress conditions. Our reverse genetic and cell biology experiments suggest that UBAP2L forms granules independent of G3BP1 and 2 but does not interfere with stress-induced translational inhibition. We propose a model in which UBAP2L is an essential SG nucleator that acts upstream of G3BP1 and 2 and facilitates G3BP1 core formation and SG assembly and growth.


Asunto(s)
Proteínas Portadoras/metabolismo , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Células HeLa , Humanos
18.
ACS Chem Biol ; 15(1): 243-253, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31790201

RESUMEN

VCP/p97 belongs to the AAA+ ATPase family and has an essential role in several cellular processes ranging from cell division to protein homeostasis. Compounds targeting p97 inhibit the main ATPase domain and cause cell death. Here, using PNA-encoded chemical libraries, we have identified two small molecules that target the regulatory domain of p97, comprising the N-terminal and the D1 ATPase domains, and do not cause cell death. One molecule, NW1028, inhibits the degradation of a p97-dependent reporter, whereas the other, NW1030, increases it. ATPase assays show that NW1028 and NW1030 do not affect the main catalytic domain of p97. Mapping of the binding site using a photoaffinity conjugate points to a cleft at the interface of the N-terminal and the D1 ATPase domains. We have therefore discovered two new compounds that bind to the regulatory domain of p97 and modulate specific p97 cellular functions. Using these compounds, we have revealed a role for p97 in the regulation of mitotic spindle orientation in HeLa cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Inhibidores Enzimáticos/química , Proteínas Nucleares/metabolismo , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Sitios de Unión , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/genética , Unión Proteica , Dominios Proteicos , Proteolisis , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad
19.
J Cell Biol ; 218(12): 4112-4126, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31645459

RESUMEN

In animal cells, faithful chromosome segregation depends on the assembly of a bipolar spindle driven by the timely separation of the two centrosomes. Here we took advantage of the highly stereotypical cell divisions in Caenorhabditis elegans embryos to identify new regulators of centrosome separation. We find that at the two-cell stage, the somatic AB cell initiates centrosome separation later than the germline P1 cell. This difference is strongly exacerbated by the depletion of the kinesin-13 KLP-7/MCAK, resulting in incomplete centrosome separation at NEBD in AB but not P1. Our genetic and cell biology data indicate that this phenotype depends on cell polarity via the enrichment in AB of the mitotic kinase PLK-1, which itself limits the cortical localization of the dynein-binding NuMA orthologue LIN-5. We postulate that the timely separation of centrosomes is regulated in a cell type-dependent manner.


Asunto(s)
Caenorhabditis elegans/embriología , Polaridad Celular , Centrosoma/metabolismo , Segregación Cromosómica , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrosoma/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Huso Acromático
20.
J Cell Biol ; 217(2): 483-493, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29222185

RESUMEN

Spindle orientation determines the axis of division and is crucial for cell fate, tissue morphogenesis, and the development of an organism. In animal cells, spindle orientation is regulated by the conserved Gαi-LGN-NuMA complex, which targets the force generator dynein-dynactin to the cortex. In this study, we show that p37/UBXN2B, a cofactor of the p97 AAA ATPase, regulates spindle orientation in mammalian cells by limiting the levels of cortical NuMA. p37 controls cortical NuMA levels via the phosphatase PP1 and its regulatory subunit Repo-Man, but it acts independently of Gαi, the kinase Aurora A, and the phosphatase PP2A. Our data show that in anaphase, when the spindle elongates, PP1/Repo-Man promotes the accumulation of NuMA at the cortex. In metaphase, p37 negatively regulates this function of PP1, resulting in lower cortical NuMA levels and correct spindle orientation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos Nucleares/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Neuropéptido Y/metabolismo , Huso Acromático/metabolismo , Células HeLa , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA