Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Science ; 216(4549): 946-51, 1982 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-6281888

RESUMEN

The bacteriophage lambda N gene product positively controls development by preventing termination of transcription at terminator sites critical to the sequential expression of phage genes. Many host transcription factors, including RNA polymerase, are involved in N gene action. Recent findings have shown that ribosomal proteins are also involved. The current understanding of how the N protein affects transcription termination is reviewed, and a possible model and current problems are discussed.


Asunto(s)
Bacteriófago lambda/genética , Proteínas de Unión al ADN , Transcripción Genética , Proteínas Virales/genética , Proteínas Bacterianas/fisiología , ARN Polimerasas Dirigidas por ADN/fisiología , Escherichia coli/fisiología , Operón , Proteínas Represoras/fisiología , Factor Rho/fisiología , Ribosomas/fisiología , Proteínas Reguladoras y Accesorias Virales
2.
Science ; 286(5448): 2337-9, 1999 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-10600743

RESUMEN

The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.


Asunto(s)
ADN Viral/metabolismo , Factores de Elongación de Péptidos , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Azidas , Proteínas Bacterianas/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Reactivos de Enlaces Cruzados , ARN Polimerasas Dirigidas por ADN/metabolismo , Ditiotreitol/farmacología , Escherichia coli/enzimología , Escherichia coli/virología , Proteínas de Escherichia coli , Datos de Secuencia Molecular , Fenantrolinas/metabolismo , Unión Proteica , Piridinas , ARN Viral/metabolismo , Moldes Genéticos , Factores de Transcripción/química , Factores de Elongación Transcripcional , Ensayo de Placa Viral , Proteínas Virales/química , Zinc/farmacología
3.
Science ; 271(5256): 1718-23, 1996 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-8596931

RESUMEN

Cell cycle progression in cycling Xenopus egg extracts is accompanied by fluctuations in the concentration of adenosine 3',5'-monophosphate (cAMP) and in the activity of the cAMP-dependent protein kinase (PKA). The concentration of cAMP and the activity of PKA decrease at the onset of mitosis and increase at the transition between mitosis and interphase. Blocking the activation of PKA at metaphase prevented the transition into interphase; the activity of M phase-promoting factor (MPF; the cyclin B-p34cdc2 complex) remained high, and mitotic cyclins were not degraded. The arrest in mitosis was reversed by the reactivation of PKA. The inhibition of protein synthesis prevented the accumulation of cyclin and the oscillations of MPF, PKA, and cAMP. Addition of recombinant nondegradable cyclin B activated p34cdc2 and PKA and induced the degradation of full-length cyclin B. Addition of cyclin A activated p34cdc2 but not PKA, nor did it induce the degradation of full-length cyclin B. These findings suggest that cyclin degradation and exit from mitosis require MPF-dependent activation of the cAMP-PKA pathway.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Interfase , Factor Promotor de Maduración/metabolismo , Mitosis , Animales , Proteína Quinasa CDC2/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Ciclinas/metabolismo , Ciclinas/farmacología , Activación Enzimática , Oocitos/citología , Proteínas Proto-Oncogénicas c-mos/farmacología , Proteínas Recombinantes de Fusión/farmacología , Xenopus
4.
Science ; 272(5268): 1606-14, 1996 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-8658133

RESUMEN

DnaK and other members of the 70-kilodalton heat-shock protein (hsp70) family promote protein folding, interaction, and translocation, both constitutively and in response to stress, by binding to unfolded polypeptide segments. These proteins have two functional units: a substrate-binding portion binds the polypeptide, and an adenosine triphosphatase portion facilitates substrate exchange. The crystal structure of a peptide complex with the substrate-binding unit of DnaK has now been determined at 2.0 angstroms resolution. The structure consists of a beta-sandwich subdomain followed by alpha-helical segments. The peptide is bound to DnaK in an extended conformation through a channel defined by loops from the beta sandwich. An alpha-helical domain stabilizes the complex, but does not contact the peptide directly. This domain is rotated in the molecules of a second crystal lattice, which suggests a model of conformation-dependent substrate binding that features a latch mechanism for maintaining long lifetime complexes.


Asunto(s)
Chaperoninas/metabolismo , Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Chaperoninas/química , Cristalografía por Rayos X , Escherichia coli , Proteínas HSP70 de Choque Térmico/química , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
5.
Curr Biol ; 7(12): 1011-4, 1997 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-9382844

RESUMEN

A-kinase anchor protein 75 (AKAP75) binds regulatory subunits (RIIalpha and RIIbeta) of type II protein kinase A (PKAII) isoforms and targets the resulting complexes to sites in the cytoskeleton that abut the plasma membrane [1-7]. Co-localization of AKAP75-PKAII with adenylate cyclase and PKA substrate/effector proteins in cytoskeleton and plasma membrane effects a physical and functional integration of up-stream and downstream signaling proteins, thereby ensuring efficient propagation of signals carried by locally generated cyclic AMP (cAMP) [4-9]. An important, but previously untested, prediction of the AKAP model is that efficient, cyclic nucleotide-dependent liberation of diffusible PKA catalytic subunits from cytoskeleton-bound AKAP75-PKAII complexes will also enhance signaling to distal organelles, such as the nucleus. We tested this idea by suing HEK-A75 cells, in which PKAII isoforms are immobilized in cortical cytoskeleton by AKAP75. Abilities of HEK-A75 and control cells (with cytoplasmically dispersed PKAII isoforms) to respond to increases in cAMP content were compared. Cells with anchored PKAII exhibited a threefold higher level of nuclear catalytic subunit content and 4-10-fold greater increments in phosphorylation of a regulatory serine residue in cAMP response element binding protein (CREB) and in phosphoCREB-stimulated transcription of the c-fos gene. Each effect occurred more rapidly in cells containing targeted AKAP75-PKAII complexes. Thus, anchoring of PKAII in actin cortical cytoskeleton increases the rate, magnitude and sensitivity of cAMP signaling to the nucleus.


Asunto(s)
Proteínas Portadoras , AMP Cíclico/metabolismo , Proteínas/metabolismo , Transducción de Señal , Línea Celular , Núcleo Celular/metabolismo , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Subunidad RIIalfa de la Proteína Quinasa Dependiente de AMP Cíclico , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico , Proteína Quinasa Tipo II Dependiente de AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas/genética , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tionucleótidos/farmacología
6.
Curr Biol ; 9(16): 903-6, 1999 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-10469595

RESUMEN

Passage through mitosis resets cells for a new round of chromosomal DNA replication [1]. In late mitosis, the pre-replication complex - which includes the origin recognition complex (ORC), Cdc6 and the minichromosome maintenance (MCM) proteins - binds chromatin as a pre-requisite for DNA replication. S-phase-promoting cyclin-dependent kinases (Cdks) and the kinase Dbf4-Cdc7 then act to initiate replication. Before the onset of replication Cdc6 dissociates from chromatin. S-phase and M-phase Cdks block the formation of a new pre-replication complex, preventing DNA over-replication during the S, G2 and M phases of the cell cycle [1]. The nuclear membrane also contributes to limit genome replication to once per cell cycle [2]. Thus, at the end of M phase, nuclear membrane breakdown and the collapse of Cdk activity reset cells for a new round of chromosomal replication. We showed previously that protein kinase A (PKA) activity oscillates during the cell cycle in Xenopus egg extracts, peaking in late mitosis. The oscillations are induced by the M-phase-promoting Cdk [3] [4]. Here, we found that PKA oscillation was required for the following phase of DNA replication. PKA activity was needed from mitosis exit to the formation of the nuclear envelope. PKA was not required for the assembly of ORC2, Cdc6 and MCM3 onto chromatin. Inhibition of PKA activity, however, blocked the release of Cdc6 from chromatin and subsequent DNA replication. These data suggest that PKA activation in late M phase is required for the following S phase.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Replicación del ADN/fisiología , Proteínas de Saccharomyces cerevisiae , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Cromatina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Densitometría , Activación Enzimática , Glutatión Transferasa/farmacología , Immunoblotting , Masculino , Mitosis/efectos de los fármacos , Complejo de Reconocimiento del Origen , Proteínas Recombinantes de Fusión/farmacología , Espermatozoides/fisiología , Xenopus/genética , Xenopus/crecimiento & desarrollo
7.
Curr Biol ; 11(15): 1221-6, 2001 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-11516956

RESUMEN

Mitosis requires cyclin-dependent kinase (cdk) 1-cyclin B activity [1]. Exit from mitosis depends on the inactivation of the complex by the degradation of cyclin B [2]. Cdk2 is also active during mitosis [3, 4]. In Xenopus egg extracts, cdk2 is primarily in complex with cyclin E, which is stable [5]. At the end of mitosis, downregulation of cdk2-cyclin E activity is accompanied by inhibitory phosphorylation of cdk2 [6]. Here, we show that cdk2-cyclin E activity maintains cdk1-cyclin B during mitosis. At mitosis exit, cdk2 is inactivated prior to cdk1. The loss of cdk2 activity follows and depends upon an increase in protein kinase A (PKA) activity. Prematurely inactivating cdk2 advances the time of cyclin B degradation and cdk1 inactivation. Blocking PKA, instead, stabilizes cdk2 activity and inhibits cyclin B degradation and cdk1 inactivation. The stabilization of cdk1-cyclin B is also induced by a mutant cdk2-cyclin E complex that is resistant to inhibitory phosphorylation. P21-Cip1, which inhibits both wild-type and mutant cdk2-cyclin E, reverses mitotic arrest under either condition. Our findings indicate that the proteolysis-independent downregulation of cdk2 activity at the end of mitosis depends on PKA and is required to activate the proteolysis cascade that leads to mitosis exit.


Asunto(s)
Quinasas CDC2-CDC28 , Quinasas Ciclina-Dependientes/fisiología , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Quinasa 2 Dependiente de la Ciclina , Xenopus , Proteínas de Xenopus
8.
Curr Opin Microbiol ; 3(2): 197-202, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10745003

RESUMEN

The folding of proteins from their initial unstructured state to their mature form has long been known to be promoted by other proteins known as chaperones and chaperonins. Recent biochemical and structural discoveries have provided dramatic insight into how these folding proteins work. This review will discuss these findings and suggest future experimental directions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chaperoninas/metabolismo , Escherichia coli , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas Bacterianas/química , Chaperoninas/química , Modelos Moleculares , Desnaturalización Proteica , Relación Estructura-Actividad
9.
J Mol Biol ; 247(3): 428-42, 1995 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-7714899

RESUMEN

Phage HK022 Nun protein excludes phage lambda by terminating transcription near the lambda nut sites. We have established a purified in vitro system that reproduces the in vivo sequence and factor requirements of Nun. Nun arrests transcription by E. coli RNA polymerase at or near elongation pause sites distal to the nut sites. The boxB sequence of nut is required for optimal Nun activity; boxA plays a lesser role. The efficiency of transcription arrest is strongly enhanced by the four E. coli Nus factors. The factors increase the specific activity of Nun, and allow it to act at higher ribonucleoside triphosphate concentrations. A wild-type boxA is required for stimulation by Nus factors. Nun and the lambda N antitermination protein compete for their opposing reactions. This competition may be at the level of binding of boxB RNA.


Asunto(s)
Bacteriófago lambda/genética , Colifagos/fisiología , Proteínas de Escherichia coli , Regulación Viral de la Expresión Génica , Factores de Transcripción/fisiología , Transcripción Genética , Interferencia Viral/fisiología , Proteínas Virales/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Secuencia de Bases , Unión Competitiva , Colifagos/genética , ADN Viral/genética , ADN Viral/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Factores de Elongación de Péptidos/fisiología , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Ribosómicas/fisiología , Factores de Elongación Transcripcional
10.
J Mol Biol ; 241(2): 133-5, 1994 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-8057353

RESUMEN

A set of heptapeptides was used to compare the relative peptide affinities of three proteins of the hsp70 family: bacterial DnaK, mammalian cytosolic hsc70, and BiP from mammalian ER. Each hsp displays a characteristic pattern of relative affinities. DnaK and hsc70 are more similar to each other than to BiP. A difference in peptide binding specificity may be an important determinant in adjusting an hsp70 family member to its particular cellular function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/aislamiento & purificación , Bovinos , Cricetinae , Datos de Secuencia Molecular , Oligopéptidos/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo
11.
J Mol Biol ; 227(1): 29-37, 1992 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-1522593

RESUMEN

The lambdoid bacteriophage regulate gene expression by suppressing transcription terminators. Although similar in sequence to lambda, HK022 lacks an analogue to the lambda N antitermination gene and a distinct nutR sequence. To define the HK022 antitermination system, we plated the phage on Escherichia coli nus mutants that inhibit lambda N function. Only rpoB60 (also called nusC60) blocked HK022 lytic growth. Analyses of HK022-lambda hybrid phage suggested that a HK022 function analogous to lambda Q was inhibited by rpoB60. This result was confirmed with pR'-tR'-galK fusions. HK022 Q-protein suppressed tR' in wild-type but not in rpoB60 mutants. The lambda Q-protein, although inhibited by rpoB60, was more active than the HK022 analogue. A single amino acid difference between the two Q-proteins accounts for the phenotype. Changing the penultimate residue of HK022 Q from alanine to the lambda threonine generated a phage that could propagate on rpoB60 hosts. Host and phage mutations that permitted HK022 growth in rpoB60 strains were characterized. The bacterial suppressors were located in the Escherichia coli nusB gene. The phage suppressors represented recessive mutations in a HK022 b-region sequence encoding an open reading frame of 73 codons.


Asunto(s)
Colifagos/genética , Escherichia coli/genética , Regulación Viral de la Expresión Génica , Genes Virales , Transcripción Genética , Proteínas Estructurales Virales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Genes Supresores , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , Regiones Terminadoras Genéticas
12.
J Mol Biol ; 222(2): 189-96, 1991 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-1660071

RESUMEN

The Escherichia coli rpoB636 mutant is defective in the transcription of lac and other catabolite-sensitive operons. The lac promoter variant, UV5, which is independent of cyclic AMP and the cyclic AMP receptor protein, CRP, was also defective in rpoB636 mutants. The activity of the lac UV5 promoter was restored to wild-type levels by deletion of cya (adenylate cyclase) or crp. Cyclic AMP and CRP apparently act as inhibitors of the rpoB636 RNA polymerase.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Receptores de AMP Cíclico/fisiología , Transcripción Genética , Bacteriófago lambda/genética , AMP Cíclico/fisiología , Análisis Mutacional de ADN , ADN Bacteriano/genética , Mutación , Regiones Promotoras Genéticas , Relación Estructura-Actividad
13.
J Mol Biol ; 220(3): 613-9, 1991 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-1831236

RESUMEN

The nun gene product of the lambdoid coliphage HK022 provokes premature transcription termination at, or near, the phage lambda nut sites. Termination by Nun and antitermination by lambda N protein both require the nut sites and Escherichia coli NusA, NusB and NusE proteins. To characterize further the host requirements for Nun termination, we selected host mutations that blocked termination at lambda nutR. In addition to mutations in nusA, nusB and nusE, we obtained mutations in rpoC, encoding the RNA polymerase beta' subunit. The nusA and rpoC mutations suppressed Nun termination but not antitermination by lambda N function. The mutations antagonized Nun only at lambda nutR; termination at lambda nutL occurred in all the mutant strains. Thus, nutL is not functionally equivalent to nutR. We conclude that the host requirements for Nun termination overlap but are not identical with those for N antitermination, and, in particular, that the beta' subunit of RNP may be Nun-specific.


Asunto(s)
Bacteriófago lambda/genética , Colifagos/genética , Escherichia coli/genética , Genes Virales , Mutagénesis , Proteínas Represoras/genética , Regiones Terminadoras Genéticas , Transcripción Genética , Proteínas Virales/genética , Proteínas Estructurales Virales/genética , Secuencia de Bases , Cromosomas Bacterianos , Clonación Molecular , ADN Bacteriano/genética , Datos de Secuencia Molecular , Operón , Plásmidos , Reacción en Cadena de la Polimerasa
14.
J Mol Biol ; 209(1): 55-64, 1989 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-2530356

RESUMEN

The cin-1 mutation creates a new promoter (pcin) in the tR1 region of bacteriophage lambda. The pcin promoter transcribes the cI repressor gene constitutively. lambda cin-1 does not propagate on Escherichia coli mutants lacking the integrative host factor (IHF). lambda cI- cin-1 grows normally in IHF- mutants, indicating that repressor overproduction from pcin blocks lytic growth. The presence of an IHF binding site which overlaps the pcin promoter led us to the hypothesis that IHF functions as a repressor of pcin transcription. We find that the pcin promoter is fivefold more active in a host lacking IHF than in wild-type cells. In vitro studies show that IHF directly inhibits transcription initiation at pcin. Abortive initiation and gel retardation assays demonstrate that IHF interferes with the binding of RNA polymerase to the pcin promoter. RNA polymerase bound in an open promoter complex is resistant to IHF. We propose that IHF binding to the pcin promoter region blocks the binding of RNA polymerase to the promoter, either by covering specific nucleotides or by distorting DNA structure.


Asunto(s)
Proteínas Bacterianas/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Factores de Transcripción/genética , Bacteriófago lambda , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Factores de Integración del Huésped , Datos de Secuencia Molecular , Mutación , Transcripción Genética
15.
J Mol Biol ; 168(1): 73-85, 1983 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-6224023

RESUMEN

The bacteriophage lambda N protein regulates phage development by selectively suppressing transcription termination in its host, Escherichia coli. The E. coli nus mutants prevent N activity. To provide additional information on transcription termination, we have isolated pseudo-revertants of the nusA1 mutation that restore lambda N function. One series of pseudo-revertants lie in the E. coli nusB gene, whose product is normally required for lambda N activity. These mutations are N-specific: mutations that restore lambda N activity do not restore the activity of the analogous N protein of phage 21. Similarly, nusB mutations that restore phage 21 N function are deficient for lambda N function. Mapping of the two classes of mutation is consistent with their location in two distinct domains in the nusB protein. We discuss whether nusB is specific for N protein or for some other component of this regulation system, e.g. the phage site (nut) required for N action.


Asunto(s)
Bacteriófago lambda/genética , Escherichia coli/genética , Terminación de la Cadena Péptídica Traduccional , Proteínas Virales/genética , Mapeo Cromosómico , Cromosomas Bacterianos , Galactoquinasa/genética , Galactoquinasa/metabolismo , Mutación , Operón , Supresión Genética , Transcripción Genética
16.
J Mol Biol ; 308(2): 99-114, 2001 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-11327755

RESUMEN

cAMP-dependent protein kinase is targeted to discrete subcellular locations by a family of specific anchor proteins (A-kinase anchor proteins, AKAPs). Localization recruits protein kinase A (PKA) holoenzyme close to its substrate/effector proteins, directing and amplifying the biological effects of cAMP signaling.AKAPs include two conserved structural modules: (i) a targeting domain that serves as a scaffold and membrane anchor; and (ii) a tethering domain that interacts with PKA regulatory subunits. Alternative splicing can shuffle targeting and tethering domains to generate a variety of AKAPs with different targeting specificity. Although AKAPs have been identified on the basis of their interaction with PKA, they also bind other signaling molecules, mainly phosphatases and kinases, that regulate AKAP targeting and activate other signal transduction pathways. We suggest that AKAP forms a "transduceosome" by acting as an autonomous multivalent scaffold that assembles and integrates signals derived from multiple pathways. The transduceosome amplifies cAMP and other signals locally and, by stabilizing and reducing the basal activity of PKA, it also exerts long-distance effects. The AKAP transduceosome thus optimizes the amplitude and the signal/noise ratio of cAMP-PKA stimuli travelling from the membrane to the nucleus and other subcellular compartments.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Anclaje a la Quinasa A , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Citoesqueleto/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Peroxisomas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal
17.
J Mol Biol ; 212(4): 635-43, 1990 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-2139472

RESUMEN

The Nun protein of the lambdoid phage HK022 blocks lambda growth by terminating transcription at (or near) the lambda nut sites. An HK022 lysogen carrying a fusion of the lambda pR promoter and nutR site to a gal operon that lacks its own promoter is, therefore, Gal-. To characterize the target of Nun action, spontaneous Gal+ revertants of this strain were isolated and characterized. Two cis-acting mutations are located in the fusion and represent transversions of conserved nucleotides within the boxA sequence (CGCTCTTA) of nutR. One mutation, (CTCTCTTA), is identical with boxA5. The second, boxA16 (CGCTATTA), has not been reported previously. In the absence of Nun, both boxA mutants reduce gal expression. Analysis of in vivo fusion RNA indicates that the mutations increase termination at or near tR1, a rho-dependent lambda terminator located upstream from the fusion point. In contrast to the nutR+ fusion, Nun stimulates gal expression in the boxA mutants by suppressing transcription termination in the tR1 region. Nun antitermination, however, does not extend to distal terminators. The lambda N-function also suppresses termination at or near tR1 in the mutant fusions. N fails to suppress terminators distal to tR1 in the boxA5 fusion, but displays persistent antitermination activity in the boxA16 fusion. A similar reversal of Nun activity occurs when wild-type fusions are introduced into nusA1, nusB5 or nusE71 hosts. We therefore suggest that Nun and N can interact with RNA polymerase in the absence of wild-type boxA, nusA, nusB or nusE, but that the complex formed with mutant components differs functionally from wild-type.


Asunto(s)
Bacteriófago lambda/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Proteínas Virales/genética , Bacteriófago lambda/crecimiento & desarrollo , Secuencia de Bases , Northern Blotting , Genes Virales , Mutación , Fenotipo , Regiones Promotoras Genéticas , Transcripción Genética
18.
J Mol Biol ; 207(4): 675-93, 1989 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-2760929

RESUMEN

The immunity region of the lambdoid phage, HK022, has been sequenced. The HK022 repressor gene, its cognate operators and promoters, and several early phage genes can be discerned. The overall design of the immunity region resembles that of other lambdoid phages. The location of the HK022 nun gene, whose product excludes superinfecting lambda by terminating transcription at (or near) the lambda nut sites, is analogous to that of gene N in lambda. nun is preceded by sequences similar to the lambda nut sites and the lambda pL promoter and is followed by several transcription termination signals. Despite these similarities, Nun is required neither for the lytic nor the lysogenic pathway of phage development. Again, unlike N, Nun is expressed in a prophage, perhaps from a promoter other than pL. We suggest that Nun and N have diverged in evolution and now perform different functions for their respective phages. Although Nun and N compete at the lambda nut sites and interact with the same host Nus proteins, they are only distantly related in predicted amino acid sequence. The presence of transcription terminators in the pL operon suggests that the expression of the HK022 early functions, like those of lambda, entails an antitermination mechanism. However, Nun does not appear to be an essential component of this mechanism. Our most economic model is that the HK022 nutL sequence suppresses pL operon terminators in the absence of a phage-encoded antitermination protein. Striking homologies between the HK022 nutL sequence and related sequences in the Escherichia coli rrn operons support this notion. Alternatively, a phage antitermination gene may be located outside the pL operon.


Asunto(s)
Bacteriófagos , Genes Virales , Inmunidad , Secuencia de Bases , Datos de Secuencia Molecular , Mutación , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Mapeo Restrictivo , Regiones Terminadoras Genéticas , Proteínas Virales/genética
19.
J Mol Biol ; 224(4): 937-48, 1992 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-1533252

RESUMEN

The high level of efficiency of the bacteriophage lambda pL promoter is dependent upon the topological state of the promoter DNA and the binding of a DNA-bending protein, IHF, to a site centered -86 base-pairs upstream from the pL transcription start site. Abortive initiation assays indicate that DNA supercoiling stimulates open complex formation, whereas IHF enhances promoter recognition. IHF stimulates promoter recognition to the same extent on linear and supercoiled templates. We found that the pL region contains a second promoter, pL2, that initiates transcription 42 base-pairs upstream from pL. Although competitive with pL and inhibited by IHF, mutations in pL2 do not affect the regulation of pL. Stimulation by IHF is helix-face-dependent. IHF inhibits pL when the IHF binding site is displaced a helical half-turn upstream. The pL sequences protected against DNase I digestion by bound IHF and RNA polymerase do not overlap. However, DNase I-hypersensitive sites appear in the region between the two bound proteins. In addition, IHF enhances RNA polymerase binding to pL. These data suggest that stimulation of pL by IHF involves the interaction of IHF and RNA polymerase to form a loop or otherwise distort the DNA between their binding sites.


Asunto(s)
Proteínas Bacterianas/genética , Bacteriófago lambda/genética , ADN Superhelicoidal/genética , Proteínas de Unión al ADN/fisiología , Regulación Viral de la Expresión Génica , Regiones Promotoras Genéticas , Secuencia de Bases , Sitios de Unión , ADN Viral/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Factores de Integración del Huésped , Sustancias Macromoleculares , Datos de Secuencia Molecular , Transcripción Genética
20.
J Mol Biol ; 235(3): 848-54, 1994 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-8289323

RESUMEN

The sequence specificity of DnaK substrate binding has been studied using a peptide display library. Based on the amino acid patterns that appeared in this selection, short peptides were synthesized for direct measurements of DnaK affinity. The results show that peptides enriched in internal hydrophobic residues are preferential DnaK substrates, and negatively charged peptides have poor affinity. The isolated C-terminal domain of DnaK binds peptides. Peptide dissociation studies indicate that bound peptides are released from the C-terminal fragment and from DnaK at identical rates. ATP stimulates peptide dissociation from DnaK but not from the C-terminal fragment.


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Unión Competitiva , Cartilla de ADN/química , Escherichia coli , Cinética , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA