RESUMEN
BACKGROUND: The molecular causes of many hematologic cancers remain unclear. Among these cancers are chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL1-negative) chronic myeloid leukemia (CML), both of which are diagnosed on the basis of neoplastic expansion of granulocytic cells and exclusion of genetic drivers that are known to occur in other myeloproliferative neoplasms and myeloproliferative-myelodysplastic overlap neoplasms. METHODS: To identify potential genetic drivers in these disorders, we used an integrated approach of deep sequencing coupled with the screening of primary leukemia cells obtained from patients with CNL or atypical CML against panels of tyrosine kinase-specific small interfering RNAs or small-molecule kinase inhibitors. We validated candidate oncogenes using in vitro transformation assays, and drug sensitivities were validated with the use of assays of primary-cell colonies. RESULTS: We identified activating mutations in the gene encoding the receptor for colony-stimulating factor 3 (CSF3R) in 16 of 27 patients (59%) with CNL or atypical CML. These mutations segregate within two distinct regions of CSF3R and lead to preferential downstream kinase signaling through SRC family-TNK2 or JAK kinases and differential sensitivity to kinase inhibitors. A patient with CNL carrying a JAK-activating CSF3R mutation had marked clinical improvement after the administration of the JAK1/2 inhibitor ruxolitinib. CONCLUSIONS: Mutations in CSF3R are common in patients with CNL or atypical CML and represent a potentially useful criterion for diagnosing these neoplasms. (Funded by the Leukemia and Lymphoma Society and others.).
Asunto(s)
Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/genética , Leucemia Neutrofílica Crónica/genética , Mutación , Receptores del Factor Estimulante de Colonias/genética , Animales , Humanos , Quinasas Janus/antagonistas & inhibidores , Leucemia Linfoide/genética , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/diagnóstico , Leucemia Neutrofílica Crónica/diagnóstico , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , ARN Interferente Pequeño , Transducción de Señal/fisiologíaRESUMEN
Rab4A is a master regulator of receptor recycling from endocytic compartments to the plasma membrane. The protein TBC1D16 is up-regulated in melanoma, and TBC1D16-overexpressing melanoma cells are dependent on TBC1D16. We show here that TBC1D16 enhances the intrinsic rate of GTP hydrolysis by Rab4A. TBC1D16 is both cytosolic and membrane associated; the membrane-associated pool colocalizes with transferrin and EGF receptors (EGFRs) and early endosome antigen 1, but not with LAMP1 protein. Expression of two TBC1D16 isoforms, but not the inactive R494A mutant, reduces transferrin receptor recycling but has no effect on transferrin receptor internalization. Expression of TBC1D16 alters GFP-Rab4A membrane localization. In HeLa cells, overexpression of TBC1D16 enhances EGF-stimulated EGFR degradation, concomitant with decreased EGFR levels and signaling. Thus, TBC1D16 is a GTPase activating protein for Rab4A that regulates transferrin receptor recycling and EGFR trafficking and signaling.
Asunto(s)
Receptores ErbB/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rab4/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Proteínas Activadoras de GTPasa/genética , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Mutación Missense , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/fisiología , Proteolisis , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab4/genéticaRESUMEN
One hallmark of tumor formation is the transcriptional upregulation of human telomerase reverse transcriptase, hTERT, and the resultant induction of telomerase activity. However, little is presently understood about how hTERT is differentially activated in tumor cells versus normal somatic cells. Specifically, it is unclear if oncoproteins can directly elicit hTERT expression. To this end, we now show that three oncoproteins, HER2/Neu, Ras, and Raf, stimulate hTERT promoter activity via the ETS transcription factor ER81 and ERK mitogen-activated protein (MAP) kinases. Mutating ER81 binding sites in the hTERT promoter or suppression of ERK MAP kinase-dependent phosphorylation of ER81 rendered the hTERT promoter unresponsive to HER2/Neu. Further, expression of dominant-negative ER81 or inhibition of HER2/Neu significantly attenuated telomerase activity in HER2/Neu-overexpressing SKBR3 breast cancer cells. Moreover, HER2/Neu, Ras, and Raf collaborated with ER81 to enhance endogenous hTERT gene transcription and telomerase activity in hTERT-negative, nonimmortalized BJ foreskin fibroblasts. Accordingly, hTERT expression was increased in HER2/Neu-positive breast tumors and breast tumor cell lines relative to their HER2/Neu-negative counterparts. Collectively, our data elucidated a mechanism whereby three prominent oncoproteins, HER2/Neu, Ras, and Raf, may facilitate tumor formation by inducing hTERT expression in nonimmortalized cells via the transcription factor ER81.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Receptor ErbB-2/metabolismo , Telomerasa/metabolismo , Factores de Transcripción/metabolismo , Proteínas ras/metabolismo , Sitios de Unión , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets , Telomerasa/genética , Regulación hacia ArribaRESUMEN
Upregulation of human telomerase reverse transcriptase (hTERT) transcription accounts for the immortalization of greater than 85% of all human tumor cells. However, the mechanism whereby hTERT expression is activated remains unresolved. Specifically, recent data challenging the role of Myc/Max in E-box-dependent activation of hTERT expression suggests that other E-box-binding proteins regulate hTERT transcription. Indeed, we now demonstrate that two such proteins, upstream stimulatory factor (USF) 1 and 2, readily associate with two E-boxes in the hTERT promoter in vitro and in vivo primarily as heterodimers, whereas Myc/Max does not. The avid binding of USF1/2 heterodimers to these E-boxes occurs in both hTERT-positive and -negative cells. In contrast, USF1/2 activates the hTERT promoter exclusively in hTERT-positive cells in a manner that is enhanced by the coactivator p300 and attenuated upon inhibiting p38-MAP kinase, a known modulator of USF activity. Collectively, our data indicate that USF binding to the hTERT promoter may be transcriptionally neutral, or even repressive, in nonimmortalized hTERT-negative somatic cells, but stimulatory in hTERT-positive cells where USF1/2 contributes to the acquisition and maintenance of immortality.