RESUMEN
Biosynthetic valencene, premnaspirodiene, and natural caryophyllene were hydrogenated and evaluated as high performance fuels. The parent sesquiterpenes were then isomerized to complex mixtures of hydrocarbons with the heterogeneous acid catalyst Nafion SAC-13. High density fuels with net heats of combustion ranging from 133-141 000 Btu gal(-1), or up to 13% higher than commercial jet fuel could be generated by this approach. The products of caryophyllene isomerization were primarily tricyclic hydrocarbons which after hydrogenation increased the fuel density by 6%. The isomerization of valencene and premnaspirodiene also generated a variety of sesquiterpenes, but in both cases the dominant product was δ-selinene. Ab initio calculations were conducted to determine the total electronic energies for the reactants and products. In all cases the results were in excellent agreement with the experimental distribution of isomers. The cetane numbers for the sesquiterpane fuels ranged from 20-32 and were highly dependent on the isomer distribution. Specific distillation cuts may have the potential to act as high density diesel fuels, while use of these hydrocarbons as additives to jet fuel will increase the range and/or time of flight of aircraft. In addition to the ability to generate high performance renewable fuels, the powerful combination of metabolic engineering and heterogeneous catalysis will allow for the preparation of a variety of sesquiterpenes with potential for pharmaceutical, flavor, and fragrance applications.
RESUMEN
Although critical to atmospheric modeling of stratospheric ozone depletion, selective heterogeneous nuclei that promote the formation of Type Ia polar stratospheric clouds (PSCs) are largely unknown. While mineral particles are known to be good ice nuclei, it is currently not clear whether they are also good nuclei for PSCs. In the present study, a high-vacuum chamber equipped with transmission Fourier transform infrared spectroscopy and a quadrupole mass spectrometer was used to study heterogeneous nucleation of nitric acid trihydrate (NAT) on two clay minerals-Na-montmorillonite and kaolinite-as analogs of atmospheric terrestrial and extraterrestrial minerals. The minerals are first coated with a 3:1 supercooled H2O/HNO3 solution prior to the observed nucleation of crystalline NAT. At 220 K, NAT formation was observed at low SNAT values of 12 and 7 on kaolinite and montmorillonite clays, respectively. These are the lowest SNAT values reported in the literature on any substrate. However, NAT nucleation exhibited significant temperature dependence. At lower temperatures, representative of typical polar stratospheric conditions, much higher supersaturations were required before nucleation was observed. Our results suggest that NAT nucleation on mineral particles, not previously treated with sulfuric acid, may not be an important nucleation platform for Type Ia PSCs under normal polar stratospheric conditions.
RESUMEN
The Mars Science Laboratory (MSL) Rover Environmental Monitoring Station (REMS) has now made continuous in situ meteorological measurements for several Martian years at Gale crater, Mars. Of importance in the search for liquid formation are REMS' measurements of ground temperature and in-air measurements of temperature and relative humidity, which is with respect to ice. Such data can constrain the surface and subsurface stability of brines. Here we use updated calibrations to REMS data and consistent relative humidity comparisons (i.e., with respect to liquid versus with respect to ice) to investigate the potential formation of surface and subsurface liquids throughout MSL's traverse. We specifically study the potential for the deliquescence of calcium perchlorate. Our data analysis suggests that surface brine formation is not favored within the first 1648 sols as there are only two times (sols 1232 and 1311) when humidity-temperature conditions were within error consistent with a liquid phase. On the other hand, modeling of the subsurface environment would support brine production in the shallow subsurface. Indeed, we find that the shallow subsurface for terrains with low thermal inertia (Γ â² 300 J m-2 K-1 s-1/2) may be occasionally favorable to brine formation through deliquescence. Terrains with Γ â² 175 J m-2 K-1 s-1/2 and albedos of â³0.25 are the most apt to subsurface brine formation. Should brines form, they would occur around Ls 100°. Their predicted properties would not meet the Special nor Uncertain Region requirements, as such they would not be potential habitable environments to life as we know it.
RESUMEN
Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.
RESUMEN
Observed features such as recurring slope lineae suggest that liquid water may exist on the surface and near-subsurface of Mars today. The presence of this liquid water, likely in the form of a brine, has important implications for the present-day water cycle, habitability, and planetary protection policies. It is possible that this water is formed, at least partially, by deliquescence of salts, a process during which hygroscopic salts absorb water vapor from the atmosphere and form a saturated liquid brine. We performed laboratory experiments to examine the ability of Bacillus subtilis (B-168) spores, alone or mixed with calcium perchlorate salt (Ca(ClO4)2), to form liquid water via deliquescence under Mars-relevant conditions. Spore survival after exposure to these conditions was examined. An environmental chamber was used to expose the samples to temperature and relative humidity (RH) values similar to those found on Mars, and Raman microscopy was used to identify the phases of water and salt that were present and to confirm the presence of spores. We found that B-168 spores did not condense any detectable water vapor on their own during the diurnal cycle, even at 100% RH. However, when spores were mixed with perchlorate salt, the entire sample deliquesced at low RH values, immersing the spores in a brine solution during the majority of the simulated martian temperature and humidity cycle. After exposure to the simulated diurnal cycles and, in some cases, perchlorate brine, the impact of each environmental scenario on spore survival was estimated by standard plate assay. We found that, if there are deliquescent salts in contact with spores, there is a mechanism for the spores to acquire liquid water starting with only atmospheric water vapor as the H2O source. Also, neither crystalline nor liquid Ca(ClO4)2 is sporicidal despite the low water activity. Key Words: Raman microscopy-Mars-Planetary protection-Salts-Water activity. Astrobiology 17, 997-1008.
Asunto(s)
Adaptación Fisiológica , Bacillus subtilis/fisiología , Exobiología/métodos , Medio Ambiente Extraterrestre/química , Marte , Atmósfera/química , Percloratos/química , Salinidad , Esporas Bacterianas/fisiología , Agua/químicaRESUMEN
A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.