Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genome Res ; 26(6): 719-31, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053337

RESUMEN

A three-dimensional chromatin state underpins the structural and functional basis of the genome by bringing regulatory elements and genes into close spatial proximity to ensure proper, cell-type-specific gene expression profiles. Here, we performed Hi-C chromosome conformation capture sequencing to investigate how three-dimensional chromatin organization is disrupted in the context of copy-number variation, long-range epigenetic remodeling, and atypical gene expression programs in prostate cancer. We find that cancer cells retain the ability to segment their genomes into megabase-sized topologically associated domains (TADs); however, these domains are generally smaller due to establishment of additional domain boundaries. Interestingly, a large proportion of the new cancer-specific domain boundaries occur at regions that display copy-number variation. Notably, a common deletion on 17p13.1 in prostate cancer spanning the TP53 tumor suppressor locus results in bifurcation of a single TAD into two distinct smaller TADs. Change in domain structure is also accompanied by novel cancer-specific chromatin interactions within the TADs that are enriched at regulatory elements such as enhancers, promoters, and insulators, and associated with alterations in gene expression. We also show that differential chromatin interactions across regulatory regions occur within long-range epigenetically activated or silenced regions of concordant gene activation or repression in prostate cancer. Finally, we present a novel visualization tool that enables integrated exploration of Hi-C interaction data, the transcriptome, and epigenome. This study provides new insights into the relationship between long-range epigenetic and genomic dysregulation and changes in higher-order chromatin interactions in cancer.


Asunto(s)
Cromatina/genética , Epigénesis Genética , Neoplasias/genética , Factor de Unión a CCCTC , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Histonas/metabolismo , Humanos , Anotación de Secuencia Molecular , Neoplasias/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Represoras/fisiología
2.
Nucleic Acids Res ; 45(22): 12657-12670, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29156009

RESUMEN

Micro-RNAs (miRNAs) are potent regulators of gene expression and cellular phenotype. Each miRNA has the potential to target hundreds of transcripts within the cell thus controlling fundamental cellular processes such as survival and proliferation. Here, we exploit this important feature of miRNA networks to discover vulnerabilities in cancer phenotype, and map miRNA-target relationships across different cancer types. More specifically, we report the results of a functional genomics screen of 1280 miRNA mimics and inhibitors in eight cancer cell lines, and its presentation in a sophisticated interactive data portal. This resource represents the most comprehensive survey of miRNA function in oncology, incorporating breast cancer, prostate cancer and neuroblastoma. A user-friendly web portal couples this experimental data with multiple tools for miRNA target prediction, pathway enrichment analysis and visualization. In addition, the database integrates publicly available gene expression and perturbation data enabling tailored and context-specific analysis of miRNA function in a particular disease. As a proof-of-principle, we use the database and its innovative features to uncover novel determinants of the neuroblastoma malignant phenotype.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , MicroARNs/genética , Neoplasias/genética , Línea Celular , Línea Celular Tumoral , Análisis por Conglomerados , Bases de Datos de Ácidos Nucleicos , Redes Reguladoras de Genes , Humanos , MicroARNs/clasificación , Neoplasias/patología
3.
PLoS Pathog ; 12(3): e1005478, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27010548

RESUMEN

Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae) are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Infecciones por Henipavirus/virología , Virus Nipah/enzimología , Animales , Chlorocebus aethiops , Proteínas Cromosómicas no Histona/genética , Células HeLa , Virus Hendra/metabolismo , Humanos , Mutación , Virus Nipah/genética , Virus Nipah/patogenicidad , ARN Interferente Pequeño , Células Vero , Proteínas de la Matriz Viral/metabolismo
4.
PLoS Pathog ; 12(10): e1005974, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27783670

RESUMEN

Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.


Asunto(s)
Infecciones por Henipavirus/genética , MicroARNs/genética , Internalización del Virus , Animales , Hurones , Técnica del Anticuerpo Fluorescente , Estudio de Asociación del Genoma Completo , Henipavirus , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
J Cell Sci ; 126(Pt 23): 5377-90, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24046455

RESUMEN

The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R-EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R-EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R-EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR-EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer.


Asunto(s)
Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Glándulas Mamarias Humanas/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Activación Transcripcional , Angiotensina II/metabolismo , Angiotensina II/farmacología , Línea Celular Transformada , Colina Quinasa/antagonistas & inhibidores , Colina Quinasa/genética , Colina Quinasa/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Receptores ErbB/genética , Femenino , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor de Angiotensina Tipo 1/genética , Transducción de Señal , Trombina/metabolismo , Trombina/farmacología
6.
Nucleic Acids Res ; 39(Database issue): D261-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21062810

RESUMEN

The Phospho.ELM resource (http://phospho.elm.eu.org) is a relational database designed to store in vivo and in vitro phosphorylation data extracted from the scientific literature and phosphoproteomic analyses. The resource has been actively developed for more than 7 years and currently comprises 42,574 serine, threonine and tyrosine non-redundant phosphorylation sites. Several new features have been implemented, such as structural disorder/order and accessibility information and a conservation score. Additionally, the conservation of the phosphosites can now be visualized directly on the multiple sequence alignment used for the score calculation. Finally, special emphasis has been put on linking to external resources such as interaction networks and other databases.


Asunto(s)
Bases de Datos de Proteínas , Fosfoproteínas/química , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Humanos , Ratones , Fosforilación , Conformación Proteica , Análisis de Secuencia de Proteína , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
7.
Nucleic Acids Res ; 38(Database issue): D167-80, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19920119

RESUMEN

Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar Code' format, which also displays known instances from homologous proteins through a novel 'Instance Mapper' protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation.


Asunto(s)
Secuencias de Aminoácidos/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Bases de Datos de Ácidos Nucleicos , Células Eucariotas/química , Secuencia de Aminoácidos , Animales , Biología Computacional/tendencias , Bases de Datos de Proteínas , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Programas Informáticos
8.
Cell Rep ; 41(5): 111571, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323262

RESUMEN

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/genética , Nucléolo Celular/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
9.
Clin Epigenetics ; 13(1): 37, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596994

RESUMEN

BACKGROUND: BRG1 (encoded by SMARCA4) is a catalytic component of the SWI/SNF chromatin remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene expression programmes and cancer cell behaviour. RESULTS: Our investigation of SMARCA4 revealed that BRG1 is over-expressed in the majority of the 486 tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the molecular effects on global transcription programmes. Depleting BRG1 had no impact on alternative splicing and conferred only modest effect on global expression. However, of the transcriptional changes that occurred, most manifested as down-regulated expression. Deeper examination found the common thread linking down-regulated genes was involvement in proliferation, including several known to increase prostate cancer proliferation (KLK2, PCAT1 and VAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well as the transcription factors, AR and FOXA1. We also noted that BRG1 depletion repressed genes involved in cell cycle progression and DNA replication, but intriguingly, these pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, depleting BRG1 conferred G1 arrest. CONCLUSIONS: Our data have revealed that BRG1 promotes cell cycle progression and DNA replication, consistent with the increased cell proliferation associated with oncogenesis.


Asunto(s)
Proliferación Celular/genética , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Proteínas Nucleares/genética , Neoplasias de la Próstata/genética , Factores de Transcripción/genética , Ciclo Celular/genética , Línea Celular Tumoral , Replicación del ADN/genética , Regulación hacia Abajo , Expresión Génica , Humanos , Masculino , Regiones Promotoras Genéticas , Transcripción Genética/genética
10.
Cell Rep ; 36(12): 109722, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551299

RESUMEN

DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.


Asunto(s)
Metilación de ADN , Momento de Replicación del ADN/fisiología , Genoma Humano , Línea Celular Tumoral , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Bases de Datos Genéticas , Expresión Génica , Histonas/metabolismo , Humanos , Análisis de Secuencia de ADN/métodos
11.
Nucleic Acids Res ; 36(Database issue): D240-4, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17962309

RESUMEN

Phospho.ELM is a manually curated database of eukaryotic phosphorylation sites. The resource includes data collected from published literature as well as high-throughput data sets. The current release of Phospho.ELM (version 7.0, July 2007) contains 4078 phospho-protein sequences covering 12 025 phospho-serine, 2362 phospho-threonine and 2083 phospho-tyrosine sites. The entries provide information about the phosphorylated proteins and the exact position of known phosphorylated instances, the kinases responsible for the modification (where known) and links to bibliographic references. The database entries have hyperlinks to easily access further information from UniProt, PubMed, SMART, ELM, MSD as well as links to the protein interaction databases MINT and STRING. A new BLAST search tool, complementary to retrieval by keyword and UniProt accession number, allows users to submit a protein query (by sequence or UniProt accession) to search against the curated data set of phosphorylated peptides. Phospho.ELM is available on line at: http://phospho.elm.eu.org.


Asunto(s)
Bases de Datos de Proteínas , Fosfoproteínas/química , Internet , Fosfoproteínas/metabolismo , Fosforilación , Fosfoserina/análisis , Fosfotreonina/análisis , Fosfotirosina/análisis , Proteínas Quinasas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Programas Informáticos
12.
Sci Data ; 7(1): 339, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046726

RESUMEN

Identification of mechanisms underlying sensitivity and response to targeted therapies, such as the BRAF inhibitor vemurafenib, is critical in order to improve efficacy of these therapies in the clinic and delay onset of resistance. Glycolysis has emerged as a key feature of the BRAF inhibitor response in melanoma cells, and importantly, the metabolic response to vemurafenib in melanoma patients can predict patient outcome. Here, we present a multiparameter genome-wide siRNA screening dataset of genes that when depleted improve the viability and glycolytic response to vemurafenib in BRAFV600 mutated melanoma cells. These datasets are suitable for analysis of genes involved in cell viability and glycolysis in steady state conditions and following treatment with vemurafenib, as well as computational approaches to identify gene regulatory networks that mediate response to BRAF inhibition in melanoma.


Asunto(s)
Glucólisis/genética , Melanoma/metabolismo , Interferencia de ARN , Vemurafenib/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf/genética
13.
PLoS One ; 15(10): e0240746, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33057364

RESUMEN

Truncating mutations in the tumour suppressor gene APC occur frequently in colorectal cancers and result in the deregulation of Wnt signalling as well as changes in cell-cell adhesion. Using quantitative imaging based on the detection of membrane-associated E-cadherin, we undertook a protein coding genome-wide siRNA screen to identify genes that regulate cell surface E-cadherin in the APC-defective colorectal cancer cell line SW480. We identified a diverse set of regulators of E-cadherin that offer new insights into the regulation of cell-cell adhesion, junction formation and genes that regulate proliferation or survival of SW480 cells. Among the genes whose depletion promotes membrane-associated E-cadherin, we identified ZEB1, the microRNA200 family, and proteins such as a ubiquitin ligase UBE2E3, CDK8, sorting nexin 27 (SNX27) and the matrix metalloproteinases, MMP14 and MMP19. The screen also identified 167 proteins required for maintaining E-cadherin at cell-cell adherens junctions, including known junctional proteins, CTNND1 and CTNNA1, as well as signalling enzymes, DUSP4 and MARK2, and transcription factors, TEAD3, RUNX2 and TRAM2. A better understanding of the post-translational regulation of E-cadherin provides new opportunities for restoring cell-cell adhesion in APC-defective cells.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Cadherinas/genética , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Pruebas Genéticas , Proteínas de la Membrana/genética , Mutación/genética , ARN Interferente Pequeño/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Cadherinas/metabolismo , Adhesión Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Neoplasias del Colon/patología , Humanos , Proteínas de la Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos
14.
Nat Commun ; 11(1): 320, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949157

RESUMEN

Endocrine therapy resistance frequently develops in estrogen receptor positive (ER+) breast cancer, but the underlying molecular mechanisms are largely unknown. Here, we show that 3-dimensional (3D) chromatin interactions both within and between topologically associating domains (TADs) frequently change in ER+ endocrine-resistant breast cancer cells and that the differential interactions are enriched for resistance-associated genetic variants at CTCF-bound anchors. Ectopic chromatin interactions are preferentially enriched at active enhancers and promoters and ER binding sites, and are associated with altered expression of ER-regulated genes, consistent with dynamic remodelling of ER pathways accompanying the development of endocrine resistance. We observe that loss of 3D chromatin interactions often occurs coincidently with hypermethylation and loss of ER binding. Alterations in active A and inactive B chromosomal compartments are also associated with decreased ER binding and atypical interactions and gene expression. Together, our results suggest that 3D epigenome remodelling is a key mechanism underlying endocrine resistance in ER+ breast cancer.


Asunto(s)
Sitios de Unión , Neoplasias de la Mama/genética , Cromatina/metabolismo , Epigénesis Genética , Receptores de Estrógenos/química , Receptores de Estrógenos/metabolismo , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/metabolismo , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/metabolismo , Cromatina/química , Cromatina/genética , Metilación de ADN , Epigénesis Genética/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Secuenciación Completa del Genoma
15.
BMC Bioinformatics ; 10: 351, 2009 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-19852836

RESUMEN

BACKGROUND: Many proteins are highly modular, being assembled from globular domains and segments of natively disordered polypeptides. Linear motifs, short sequence modules functioning independently of protein tertiary structure, are most abundant in natively disordered polypeptides but are also found in accessible parts of globular domains, such as exposed loops. The prediction of novel occurrences of known linear motifs attempts the difficult task of distinguishing functional matches from stochastically occurring non-functional matches. Although functionality can only be confirmed experimentally, confidence in a putative motif is increased if a motif exhibits attributes associated with functional instances such as occurrence in the correct taxonomic range, cellular compartment, conservation in homologues and accessibility to interacting partners. Several tools now use these attributes to classify putative motifs based on confidence of functionality. RESULTS: Current methods assessing motif accessibility do not consider much of the information available, either predicting accessibility from primary sequence or regarding any motif occurring in a globular region as low confidence. We present a method considering accessibility and secondary structural context derived from experimentally solved protein structures to rectify this situation. Putatively functional motif occurrences are mapped onto a representative domain, given that a high quality reference SCOP domain structure is available for the protein itself or a close relative. Candidate motifs can then be scored for solvent-accessibility and secondary structure context. The scores are calibrated on a benchmark set of experimentally verified motif instances compared with a set of random matches. A combined score yields 3-fold enrichment for functional motifs assigned to high confidence classifications and 2.5-fold enrichment for random motifs assigned to low confidence classifications. The structure filter is implemented as a pipeline with both a graphical interface via the ELM resource http://elm.eu.org/ and through a Web Service protocol. CONCLUSION: New occurrences of known linear motifs require experimental validation as the bioinformatics tools currently have limited reliability. The ELM structure filter will aid users assessing candidate motifs presenting in globular structural regions. Most importantly, it will help users to decide whether to expend their valuable time and resources on experimental testing of interesting motif candidates.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Secuencias de Aminoácidos , Bases de Datos de Proteínas , Eucariontes , Péptidos/química , Conformación Proteica , Programas Informáticos
16.
Epigenetics Chromatin ; 12(1): 12, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755246

RESUMEN

BACKGROUND: ATP-dependent chromatin remodelling complexes are responsible for establishing and maintaining the positions of nucleosomes. Chromatin remodellers are targeted to chromatin by transcription factors and non-coding RNA to remodel the chromatin into functional states. However, the influence of chromatin remodelling on shaping the functional epigenome is not well understood. Moreover, chromatin remodellers have not been extensively explored as a collective group across two-dimensional and three-dimensional epigenomic layers. RESULTS: Here, we have integrated the genome-wide binding profiles of eight chromatin remodellers together with DNA methylation, nucleosome positioning, histone modification and Hi-C chromosomal contacts to reveal that chromatin remodellers can be stratified into two functional groups. Group 1 (BRG1, SNF2H, CHD3 and CHD4) has a clear preference for binding at 'actively marked' chromatin and Group 2 (BRM, INO80, SNF2L and CHD1) for 'repressively marked' chromatin. We find that histone modifications and chromatin architectural features, but not DNA methylation, stratify the remodellers into these functional groups. CONCLUSIONS: Our findings suggest that chromatin remodelling events are synchronous and that chromatin remodellers themselves should be considered simultaneously and not as individual entities in isolation or necessarily by structural similarity, as they are traditionally classified. Their coordinated function should be considered by preference for chromatin features in order to gain a more accurate and comprehensive picture of chromatin regulation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Epigénesis Genética , Código de Histonas , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
17.
Nat Commun ; 10(1): 416, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679435

RESUMEN

DNA replication timing is known to facilitate the establishment of the epigenome, however, the intimate connection between replication timing and changes to the genome and epigenome in cancer remain largely uncharacterised. Here, we perform Repli-Seq and integrated epigenome analyses and demonstrate that genomic regions that undergo long-range epigenetic deregulation in prostate cancer also show concordant differences in replication timing. A subset of altered replication timing domains are conserved across cancers from different tissue origins. Notably, late-replicating regions in cancer cells display a loss of DNA methylation, and a switch in heterochromatin features from H3K9me3-marked constitutive to H3K27me3-marked facultative heterochromatin. Finally, analysis of 214 prostate and 35 breast cancer genomes reveal that late-replicating regions are prone to cis and early-replication to trans chromosomal rearrangements. Together, our data suggests that the nature of chromosomal rearrangement in cancer is related to the spatial and temporal positioning and altered epigenetic states of early-replicating compared to late-replicating loci.


Asunto(s)
Aberraciones Cromosómicas , Momento de Replicación del ADN/fisiología , Epigénesis Genética/fisiología , Neoplasias/genética , Neoplasias de la Mama , Línea Celular Tumoral , Metilación de ADN , Replicación del ADN , Desoxirribonucleasa I/análisis , Epigenómica , Femenino , Regulación Neoplásica de la Expresión Génica , Genoma , Genómica , Heterocromatina , Humanos , Masculino , Neoplasias de la Próstata , Secuenciación Completa del Genoma
18.
Cancer Cell ; 35(2): 297-314.e8, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30753827

RESUMEN

Promoter CpG islands are typically unmethylated in normal cells, but in cancer a proportion are subject to hypermethylation. Using methylome sequencing we identified CpG islands that display partial methylation encroachment across the 5' or 3' CpG island borders. CpG island methylation encroachment is widespread in prostate and breast cancer and commonly associates with gene suppression. We show that the pattern of H3K4me1 at CpG island borders in normal cells predicts the different modes of cancer CpG island hypermethylation. Notably, genetic manipulation of Kmt2d results in concordant alterations in H3K4me1 levels and CpG island border DNA methylation encroachment. Our findings suggest a role for H3K4me1 in the demarcation of CpG island methylation borders in normal cells, which become eroded in cancer.


Asunto(s)
Islas de CpG , Metilación de ADN , ADN de Neoplasias/metabolismo , Histonas/metabolismo , Neoplasias/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Humanos , Masculino , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Regiones Promotoras Genéticas
19.
BMC Bioinformatics ; 9: 229, 2008 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-18460207

RESUMEN

BACKGROUND: The structure of many eukaryotic cell regulatory proteins is highly modular. They are assembled from globular domains, segments of natively disordered polypeptides and short linear motifs. The latter are involved in protein interactions and formation of regulatory complexes. The function of such proteins, which may be difficult to define, is the aggregate of the subfunctions of the modules. It is therefore desirable to efficiently predict linear motifs with some degree of accuracy, yet sequence database searches return results that are not significant. RESULTS: We have developed a method for scoring the conservation of linear motif instances. It requires only primary sequence-derived information (e.g. multiple alignment and sequence tree) and takes into account the degenerate nature of linear motif patterns. On our benchmarking, the method accurately scores 86% of the known positive instances, while distinguishing them from random matches in 78% of the cases. The conservation score is implemented as a real time application designed to be integrated into other tools. It is currently accessible via a Web Service or through a graphical interface. CONCLUSION: The conservation score improves the prediction of linear motifs, by discarding those matches that are unlikely to be functional because they have not been conserved during the evolution of the protein sequences. It is especially useful for instances in non-structured regions of the proteins, where a domain masking filtering strategy is not applicable.


Asunto(s)
Algoritmos , Secuencia Conservada , Proteínas/química , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Modelos Lineales , Modelos Químicos , Datos de Secuencia Molecular
20.
Epigenetics Chromatin ; 10: 16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28428825

RESUMEN

BACKGROUND: The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. RESULTS: We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. CONCLUSIONS: We highlight both the advantages and caveats of three commonly used genome-wide 5hmC profiling technologies and show that interpretation of 5hmC data can be significantly influenced by the sensitivity of methods used, especially as the levels of 5hmC are low and vary in different cell types and different genomic locations.


Asunto(s)
5-Metilcitosina/análogos & derivados , ADN/análisis , Perfilación de la Expresión Génica/métodos , Genoma Humano , 5-Metilcitosina/metabolismo , Encéfalo/metabolismo , Línea Celular Tumoral , Islas de CpG , ADN/metabolismo , Metilación de ADN , Humanos , Inmunoprecipitación , Oxigenasas de Función Mixta/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Proteínas Proto-Oncogénicas/metabolismo , Análisis de Secuencia de ADN , Sulfitos/química , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA