Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9147-9157, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743431

RESUMEN

Recent studies have shown that methane emissions are underestimated by inventories in many US urban areas. This has important implications for climate change mitigation policy at the city, state, and national levels. Uncertainty in both the spatial distribution and sectoral allocation of urban emissions can limit the ability of policy makers to develop appropriately focused emission reduction strategies. Top-down emission estimates based on atmospheric greenhouse gas measurements can help to improve inventories and inform policy decisions. This study presents a new high-resolution (0.02 × 0.02°) methane emission inventory for New York City and its surrounding area, constructed using the latest activity data, emission factors, and spatial proxies. The new high-resolution inventory estimates of methane emissions for the New York-Newark urban area are 1.3 times larger than those for the gridded Environmental Protection Agency inventory. We used aircraft mole fraction measurements from nine research flights to optimize the high-resolution inventory emissions within a Bayesian inversion. These sectorally optimized emissions show that the high-resolution inventory still significantly underestimates methane emissions within the New York-Newark urban area, primarily because it underestimates emissions from thermogenic sources (by a factor of 2.3). This suggests that there remains a gap in our process-based understanding of urban methane emissions.


Asunto(s)
Metano , Ciudad de Nueva York , Metano/análisis , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Teorema de Bayes
2.
Environ Sci Technol ; 57(48): 19565-19574, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37941355

RESUMEN

Urban methane emissions estimated using atmospheric observations have been found to exceed estimates derived by using traditional inventory methods in several northeastern US cities. In this work, we leveraged a nearly five-year record of observations from a dense tower network coupled with a newly developed high-resolution emissions map to quantify methane emission rates in Washington, DC, and Baltimore, Maryland. Annual emissions averaged over 2018-2021 were 80.1 [95% CI: 61.2, 98.9] Gg in the Washington, DC urban area and 47.4 [95% CI: 35.9, 58.5] Gg in the Baltimore urban area, with a decreasing trend of approximately 4-5% per year in both cities. We also find wintertime emissions 44% higher than summertime emissions, correlating with natural gas consumption. We further attribute a large fraction of total methane emissions to the natural gas sector using a least-squares regression on our spatially resolved estimates, supporting previous findings that natural gas systems emit the plurality of methane in both cities. This study contributes to the relatively sparse existing knowledge base of urban methane emissions sources and variability, adding to our understanding of how these emissions change in time and providing evidence to support efforts to mitigate natural gas emissions.


Asunto(s)
Contaminantes Atmosféricos , Metano , Ciudades , Metano/análisis , Gas Natural/análisis , Contaminantes Atmosféricos/análisis , Baltimore
3.
Geophys Res Lett ; 48(11): e2021GL092744, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34149111

RESUMEN

Responses to COVID-19 have resulted in unintended reductions of city-scale carbon dioxide (CO2) emissions. Here, we detect and estimate decreases in CO2 emissions in Los Angeles and Washington DC/Baltimore during March and April 2020. We present three lines of evidence using methods that have increasing model dependency, including an inverse model to estimate relative emissions changes in 2020 compared to 2018 and 2019. The March decrease (25%) in Washington DC/Baltimore is largely supported by a drop in natural gas consumption associated with a warm spring whereas the decrease in April (33%) correlates with changes in gasoline fuel sales. In contrast, only a fraction of the March (17%) and April (34%) reduction in Los Angeles is explained by traffic declines. Methods and measurements used herein highlight the advantages of atmospheric CO2 observations for providing timely insights into rapidly changing emissions patterns that can empower cities to course-correct CO2 reduction activities efficiently.

4.
Environ Sci Technol ; 53(19): 11285-11293, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31486640

RESUMEN

Urban areas are increasingly recognized as an important source of methane (CH4), but we have limited seasonally resolved observations of these regions. In this study, we quantify seasonal and annual urban CH4 emissions over the Baltimore, Maryland, and Washington, DC metropolitan regions. We use CH4 atmospheric observations from four tall tower stations and a Lagrangian particle dispersion model to simulate CH4 concentrations at these stations. We directly compare these simulations with observations and use a geostatistical inversion method to determine optimal emissions to match our observations. We use observations spanning four seasons and employ an ensemble approach considering multiple meteorological representations, emission inventories, and upwind CH4 values. Forward simulations in winter, spring, and fall underestimate observed atmospheric CH4 while in summer, simulations overestimate observations because of excess modeled wetland emissions. With ensemble geostatistical inversions, the optimized annual emissions in DC/Baltimore are 39 ± 9 Gg/month (1 δ), 2.0 ± 0.4 times higher than the ensemble mean of bottom-up emission inventories. We find a modest seasonal variability of urban CH4 emissions not captured in current inventories, with optimized summer emissions ∼41% lower than winter, broadly consistent with expectations if emissions are dominated by fugitive natural gas sources that correlate with natural gas usage.


Asunto(s)
Metano , Gas Natural , Baltimore , District of Columbia , Humedales
5.
Geophys Res Lett ; 41(12): 4381-4388, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-25821266

RESUMEN

The ability to monitor fossil fuel carbon dioxide (FFCO2) emissions from subcontinental regions using atmospheric CO2 observations remains an important but unrealized goal. Here we explore a necessary but not sufficient component of this goal, namely, the basic question of the detectability of FFCO2 emissions from subcontinental regions. Detectability is evaluated by examining the degree to which FFCO2 emissions patterns from specific regions are needed to explain the variability observed in high-frequency atmospheric CO2 observations. Analyses using a CO2 monitoring network of 35 continuous measurement towers over North America show that FFCO2 emissions are difficult to detect during nonwinter months. We find that the compounding effects of the seasonality of atmospheric transport patterns and the biospheric CO2 flux signal dramatically hamper the detectability of FFCO2 emissions. Results from several synthetic data case studies highlight the need for advancements in data coverage and transport model accuracy if the goal of atmospheric measurement-based FFCO2 emissions detection and estimation is to be achieved beyond urban scales. KEY POINTS: Poor detectability of fossil fuel CO2 emissions from subcontinental regionsDetectability assessed via attribution of emissions patterns in atmospheric dataLoss in detectability due to transport modeling errors and biospheric signal.

6.
Proc Biol Sci ; 280(1752): 20122190, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23222442

RESUMEN

Genetic improvements in heat tolerance of wheat provide a potential adaptation response to long-term warming trends, and may also boost yields in wheat-growing areas already subject to heat stress. Yet there have been few assessments of recent progress in breeding wheat for hot environments. Here, data from 25 years of wheat trials in 76 countries from the International Maize and Wheat Improvement Center (CIMMYT) are used to empirically model the response of wheat to environmental variation and assess the genetic gains over time in different environments and for different breeding strategies. Wheat yields exhibited the most sensitivity to warming during the grain-filling stage, typically the hottest part of the season. Sites with high vapour pressure deficit (VPD) exhibited a less negative response to temperatures during this period, probably associated with increased transpirational cooling. Genetic improvements were assessed by using the empirical model to correct observed yield growth for changes in environmental conditions and management over time. These 'climate-corrected' yield trends showed that most of the genetic gains in the high-yield-potential Elite Spring Wheat Yield Trial (ESWYT) were made at cooler temperatures, close to the physiological optimum, with no evidence for genetic gains at the hottest temperatures. In contrast, the Semi-Arid Wheat Yield Trial (SAWYT), a lower-yielding nursery targeted at maintaining yields under stressed conditions, showed the strongest genetic gains at the hottest temperatures. These results imply that targeted breeding efforts help us to ensure progress in building heat tolerance, and that intensified (and possibly new) approaches are needed to improve the yield potential of wheat in hot environments in order to maintain global food security in a warmer climate.


Asunto(s)
Cruzamiento , Triticum/genética , Aclimatación , Clima Desértico , Ambiente , Calor , Modelos Biológicos , Análisis de Regresión , Estaciones del Año
7.
Atmos Chem Phys ; 21(8)2021.
Artículo en Inglés | MEDLINE | ID: mdl-36873665

RESUMEN

As city governments take steps towards establishing emissions reduction targets, the atmospheric research community is increasingly able to assist in tracking emissions reductions. Researchers have established systems for observing atmospheric greenhouse gases in urban areas with the aim of attributing greenhouse gas concentration enhancements (and thus, emissions) to the region in question. However, to attribute enhancements to a particular region, one must isolate the component of the observed concentration attributable to fluxes inside the region by removing the background, which is the component due to fluxes outside. In this study, we demonstrate methods to construct several versions of a background for our carbon dioxide and methane observing network in the Washington, DC and Baltimore, MD metropolitan region. Some of these versions rely on transport and flux models, while others are based on observations upwind of the domain. First, we evaluate the backgrounds in a synthetic data framework, then we evaluate against real observations from our urban network. We find that backgrounds based on upwind observations capture the variability better than model-based backgrounds, although care must be taken to avoid bias from biospheric carbon dioxide fluxes near background stations in summer. Model-based backgrounds also perform well when upwind fluxes can be modeled accurately. Our study evaluates different background methods and provides guidance determining background methodology that can impact the design of urban monitoring networks.

8.
Artículo en Inglés | MEDLINE | ID: mdl-31275365

RESUMEN

Greenhouse gas emissions mitigation requires understanding the dominant processes controlling fluxes of these trace gases at increasingly finer spatial and temporal scales. Trace gas fluxes can be estimated using a variety of approaches that translate observed atmospheric species mole fractions into fluxes or emission rates, often identifying the spatial and temporal characteristics of the emission sources as well. Meteorological models are commonly combined with tracer dispersion models to estimate fluxes using an inverse approach that optimizes emissions to best fit the trace gas mole fraction observations. One way to evaluate the accuracy of atmospheric flux estimation methods is to compare results from independent methods, including approaches in which different meteorological and tracer dispersion models are used. In this work, we use a rich data set of atmospheric methane observations collected during an intensive airborne campaign to compare different methane emissions estimates from the Barnett Shale oil and natural gas production basin in Texas, USA. We estimate emissions based on a variety of different meteorological and dispersion models. Previous estimates of methane emissions from this region relied on a simple model (a mass balance analysis) as well as on ground-based measurements and statistical data analysis (an inventory). We find that in addition to meteorological model choice, the choice of tracer dispersion model also has a significant impact on the predicted down-wind methane concentrations given the same emissions field. The dispersion models tested often underpredicted the observed methane enhancements with significant variability (up to a factor of 3) between different models and between different days. We examine possible causes for this result and find that the models differ in their simulation of vertical dispersion, indicating that additional work is needed to evaluate and improve vertical mixing in the tracer dispersion models commonly used in regional trace gas flux inversions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA