Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
PLoS Genet ; 19(4): e1010724, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37068079

RESUMEN

The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.


Asunto(s)
Catecol O-Metiltransferasa , Pollos , Ratones , Animales , Pollos/genética , Catecol O-Metiltransferasa/genética , Ratones Noqueados , Melaninas/metabolismo , Pigmentación/genética , Mutación del Sistema de Lectura
2.
Genet Sel Evol ; 53(1): 44, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957861

RESUMEN

BACKGROUND: In all organisms, life-history traits are constrained by trade-offs, which may represent physiological limitations or be related to energy resource management. To detect trade-offs within a population, one promising approach is the use of artificial selection, because intensive selection on one trait can induce unplanned changes in others. In chickens, the breeding industry has achieved remarkable genetic progress in production and feed efficiency over the last 60 years. However, this may have been accomplished at the expense of other important biological functions, such as immunity. In the present study, we used three experimental lines of layer chicken-two that have been divergently selected for feed efficiency and one that has been selected for increased antibody response to inactivated Newcastle disease virus (ND3)-to explore the impact of improved feed efficiency on animals' immunocompetence and, vice versa, the impact of improved antibody response on animals' growth and feed efficiency. RESULTS: There were detectable differences between the low (R+) and high (R-) feed-efficiency lines with respect to vaccine-specific antibody responses and counts of monocytes, heterophils, and/or T cell population. The ND3 line presented reduced body weight and feed intake compared to the control line. ND3 chickens also demonstrated an improved antibody response against a set of commercial viral vaccines, but lower blood leucocyte counts. CONCLUSIONS: This study demonstrates the value of using experimental chicken lines that are divergently selected for RFI or for a high antibody production, to investigate the modulation of immune parameters in relation to growth and feed efficiency. Our results provide further evidence that long-term selection for the improvement of one trait may have consequences on other important biological functions. Hence, strategies to ensure optimal trade-offs among competing functions will ultimately be required in multi-trait selection programs in livestock.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/genética , Pollos/genética , Enfermedades de las Aves de Corral/genética , Selección Artificial , Animales , Peso Corporal , Pollos/crecimiento & desarrollo , Pollos/inmunología , Rasgos de la Historia de Vida , Enfermedades de las Aves de Corral/inmunología
3.
BMC Biol ; 18(1): 14, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050986

RESUMEN

BACKGROUND: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.


Asunto(s)
Coturnix/genética , Genoma , Rasgos de la Historia de Vida , Enfermedades de las Aves de Corral/genética , Conducta Social , Animales , Estaciones del Año
4.
Vet Res ; 51(1): 24, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093754

RESUMEN

Marek's disease (MD) is a major disease of chickens induced by Marek's disease virus (MDV) associated to lethal lymphomas. Current MD vaccines protect against lymphomas, but fail to prevent infection and shedding. The control of MDV shedding is crucial in order to eradicate this highly contagious virus. Like pathogenic MDV, MD vaccines infect the feather follicles of the skin before being shed into the environment. MD vaccines constitute excellent models to study virus interaction with feathers, the unique excretion source of these viruses. Herein we studied the viral persistence in feathers of a MD vaccine, the recombinant turkey herpesvirus (rHVT-ND). We report that most of the birds showed a persistent HVT infection of feathers over 41 weeks with moderate viral loads. Interestingly, 20% of the birds were identified as low HVT producers, among which six birds cleared the infection. Indeed, after week 14-26, these birds named controllers had undetectable HVT DNA in their feathers through week 41. All vaccinated birds developed antibodies to NDV, which lasted until week 41 in 95% of the birds, including the controllers. No correlation was found between HVT loads in feathers and NDV antibody titers over time. Interestingly, no HVT DNA was detected in the spleens of four controllers. This is the first description of chickens that durably cleared MD vaccine infection of feathers suggesting that control of Mardivirus shedding is achievable by the host.


Asunto(s)
Pollos , Plumas/virología , Herpesvirus Gallináceo 2/fisiología , Vacunas contra la Enfermedad de Marek/farmacología , Enfermedad de Marek/virología , Carga Viral , Animales , Anticuerpos Antivirales/sangre
5.
Genet Sel Evol ; 51(1): 12, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987584

RESUMEN

BACKGROUND: In quail, two feather colour phenotypes i.e. fawn-2/beige and yellow are associated with the ASIP locus. The aim of our study was to characterize the structural modifications within this locus that explain the yellow mutation (large deletion) and the fawn-2/beige mutation (assumed to be caused by a different structural modification). RESULTS: For the yellow phenotype, we identified a complex mutation that involves a 141,162-bp long deletion. For the fawn-2/beige phenotype, we identified a 71-kb tandem duplication that comprises one unchanged copy of ASIP and one copy present in the ITCH-ASIP fusion gene, which leads to a transcript coding for a normal ASIP protein. Although this agrees with previous reports that reported an increased level of ASIP transcripts in the skin of mutant animals, we show that in the skin from fawn-2/beige embryos, this level is higher than expected with a simple duplication of the ASIP gene. Thus, we hypothesize that the 5' region of the ITCH-ASIP fusion gene leads to a higher transcription level than the 5' region of the ASIP gene. CONCLUSIONS: We were able to conclude that the fawn-2 and beige phenotypes are caused by the same allele at the ASIP locus. Both of the associated mutations fawn-2/beige and yellow lead to the formation of a fusion gene, which encodes a transcript for the ASIP protein. In both cases, transcription of ASIP depends on the promoter of a different gene, which includes alternative up-regulating sequences. However, we cannot exclude the possibility that the loss of the 5' region of the ASIP gene itself has additional impacts, especially for the fawn-2/beige mutation. In addition, in several other species including mammals, the existence of other dominant gain-of-function structural modifications that are localized upstream of the ASIP coding sequences has been reported, which supports our hypothesis that repressors in the 5' region of ASIP are absent in the fawn-2/beige mutant.


Asunto(s)
Proteína de Señalización Agouti/genética , Pigmentación/genética , Codorniz/genética , Proteína de Señalización Agouti/metabolismo , Alelos , Animales , Color , Exones/genética , Plumas/metabolismo , Genotipo , Mutación/genética , Fenotipo , Regiones no Traducidas/genética
6.
PLoS Genet ; 11(3): e1004947, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25789773

RESUMEN

Duplex-comb (D) is one of three major loci affecting comb morphology in the domestic chicken. Here we show that the two Duplex-comb alleles, V-shaped (D*V) and Buttercup (D*C), are both associated with a 20 Kb tandem duplication containing several conserved putative regulatory elements located 200 Kb upstream of the eomesodermin gene (EOMES). EOMES is a T-box transcription factor that is involved in mesoderm specification during gastrulation. In D*V and D*C chicken embryos we find that EOMES is ectopically expressed in the ectoderm of the comb-developing region as compared to wild-type embryos. The confinement of the ectopic expression of EOMES to the ectoderm is in stark contrast to the causal mechanisms underlying the two other major comb loci in the chicken (Rose-comb and Pea-comb) in which the transcription factors MNR2 and SOX5 are ectopically expressed strictly in the mesenchyme. Interestingly, the causal mutations of all three major comb loci in the chicken are now known to be composed of large-scale structural genomic variants that each result in ectopic expression of transcription factors. The Duplex-comb locus also illustrates the evolution of alleles in domestic animals, which means that alleles evolve by the accumulation of two or more consecutive mutations affecting the phenotype. We do not yet know whether the V-shaped or Buttercup allele correspond to the second mutation that occurred on the haplotype of the original duplication event.


Asunto(s)
Desarrollo Embrionario/genética , Gastrulación/genética , Genes Duplicados , Proteínas de Dominio T Box/genética , Animales , Embrión de Pollo , Pollos/genética , Pollos/crecimiento & desarrollo , Ectodermo/embriología , Ectodermo/crecimiento & desarrollo , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genoma , Genómica , Haplotipos , Mutación , Proteínas de Dominio T Box/biosíntesis
7.
Mol Ecol ; 26(14): 3700-3714, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28394503

RESUMEN

Detecting genomic footprints of selection is an important step in the understanding of evolution. Accounting for linkage disequilibrium in genome scans increases detection power, but haplotype-based methods require individual genotypes and are not applicable on pool-sequenced samples. We propose to take advantage of the local score approach to account for linkage disequilibrium in genome scans for selection, cumulating (possibly small) signals from single markers over a genomic segment, to clearly pinpoint a selection signal. Using computer simulations, we demonstrate that this approach detects selection with higher power than several state-of-the-art single-marker, windowing or haplotype-based approaches. We illustrate this on two benchmark data sets including individual genotypes, for which we obtain similar results with the local score and one haplotype-based approach. Finally, we apply the local score approach to Pool-Seq data obtained from a divergent selection experiment on behaviour in quail and obtain precise and biologically coherent selection signals: while competing methods fail to highlight any clear selection signature, our method detects several regions involving genes known to act on social responsiveness or autistic traits. Although we focus here on the detection of positive selection from multiple population data, the local score approach is general and can be applied to other genome scans for selection or other genomewide analyses such as GWAS.


Asunto(s)
Genotipo , Haplotipos , Desequilibrio de Ligamiento , Modelos Genéticos , Selección Genética , Animales , Simulación por Computador , Polimorfismo de Nucleótido Simple , Codorniz/genética
8.
Genet Sel Evol ; 49(1): 14, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28125975

RESUMEN

BACKGROUND: Environmental exposures, for instance to chemicals, are known to impact plant and animal phenotypes on the long term, sometimes across several generations. Such transgenerational phenotypes were shown to be promoted by epigenetic alterations such as DNA methylation, an epigenetic mark involved in the regulation of gene expression. However, it is yet unknown whether transgenerational epigenetic inheritance of altered phenotypes exists in birds. The purpose of this study was to develop an avian model to investigate whether changes to the embryonic environment had a transgenerational effect that could alter the phenotypes of third-generation offspring. Given its impact on the mammalian epigenome and the reproductive system in birds, genistein was used as an environment stressor. RESULTS: We compared several third-generation phenotypes of two quail "epilines", which were obtained from genistein-injected eggs (Epi+) or from untreated eggs (Epi-) from the same founders. A "mirrored" crossing strategy was used to minimize between-line genetic variability by maintaining similar ancestor contributions across generations in each line. Three generations after genistein treatment, a significant difference in the sexual maturity of the females, which, after three generations, could not be attributed to direct maternal effects, was observed between the lines, with Epi+ females starting to lay eggs later. Adult body weight was significantly affected by genistein treatment applied in a previous generation, and a significant interaction between line and sex was observed for body weight at 3 weeks. Behavioral traits, such as evaluating the birds' reaction to social isolation, were also significantly affected by genistein treatment. Yet, global methylation analyses revealed no significant difference between the epilines. CONCLUSIONS: These findings demonstrate that embryonic environment affects the phenotype of offspring three generations later in quail. While one cannot rule out the existence of some initial genetic variability between the lines, the mirrored animal design should have minimized its effects, and thus, the observed differences in animals of the third generation may be attributed, at least partly, to transgenerational epigenetic phenomena.


Asunto(s)
Desarrollo Embrionario/genética , Ambiente , Interacción Gen-Ambiente , Codorniz/embriología , Codorniz/genética , Animales , Conducta Animal , Peso Corporal/genética , Metilación de ADN , Epigénesis Genética , Femenino , Estudios de Asociación Genética , Masculino , Fenotipo , Carácter Cuantitativo Heredable , Reproducción/genética , Temperatura
9.
Nucleic Acids Res ; 42(6): 3768-82, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24452801

RESUMEN

Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.


Asunto(s)
Pollos/genética , Impresión Genómica , Transcriptoma , Animales , Embrión de Pollo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos DBA , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN
10.
BMC Genomics ; 16: 10, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25609057

RESUMEN

BACKGROUND: Behavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions. In order to investigate the genetic control of these traits as well as their relationships with production traits, a study was undertaken on a large second generation cross (F2) between two lines of Japanese Quail divergently selected on their social reinstatement behavior. All the birds were measured for several social behaviors (social reinstatement, response to social isolation, sexual motivation, aggression), behaviors measuring the emotional reactivity of the birds (reaction to an unknown object, tonic immobility reaction), and production traits (body weight and egg production). RESULTS: We report the results of the first genome-wide QTL detection based on a medium density SNP panel obtained from whole genome sequencing of a pool of individuals from each divergent line. A genetic map was constructed using 2145 markers among which 1479 could be positioned on 28 different linkage groups. The sex-averaged linkage map spanned a total of 3057 cM with an average marker spacing of 2.1 cM. With the exception of a few regions, the marker order was the same in Japanese Quail and the chicken, which confirmed a well conserved synteny between the two species. The linkage analyses performed using QTLMAP software revealed a total of 45 QTLs related either to behavioral (23) or production (22) traits. The most numerous QTLs (15) concerned social motivation traits. Interestingly, our results pinpointed putative pleiotropic regions which controlled emotional reactivity and body-weight of birds (on CJA5 and CJA8) or their social motivation and the onset of egg laying (on CJA19). CONCLUSION: This study identified several QTL regions for social and emotional behaviors in the Quail. Further research will be needed to refine the QTL and confirm or refute the role of candidate genes, which were suggested by bioinformatics analysis. It can be hoped that the identification of genes and polymorphisms related to behavioral traits in the quail will have further applications for other poultry species (especially the chicken) and will contribute to solving animal welfare issues in poultry production.


Asunto(s)
Coturnix/genética , Sitios de Carácter Cuantitativo , Animales , Pollos/genética , Mapeo Cromosómico , Ligamiento Genético , Genoma , Polimorfismo de Nucleótido Simple , Reproducción/genética , Análisis de Secuencia de ADN , Conducta Sexual Animal , Conducta Social
11.
Virus Genes ; 51(2): 209-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26223320

RESUMEN

Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics.


Asunto(s)
Biodiversidad , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Piel/virología , Animales , Pollos , Secuenciación de Nucleótidos de Alto Rendimiento
12.
PLoS Genet ; 8(6): e1002775, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22761584

RESUMEN

Rose-comb, a classical monogenic trait of chickens, is characterized by a drastically altered comb morphology compared to the single-combed wild-type. Here we show that Rose-comb is caused by a 7.4 Mb inversion on chromosome 7 and that a second Rose-comb allele arose by unequal crossing over between a Rose-comb and wild-type chromosome. The comb phenotype is caused by the relocalization of the MNR2 homeodomain protein gene leading to transient ectopic expression of MNR2 during comb development. We also provide a molecular explanation for the first example of epistatic interaction reported by Bateson and Punnett 104 years ago, namely that walnut-comb is caused by the combined effects of the Rose-comb and Pea-comb alleles. Transient ectopic expression of MNR2 and SOX5 (causing the Pea-comb phenotype) occurs in the same population of mesenchymal cells and with at least partially overlapping expression in individual cells in the comb primordium. Rose-comb has pleiotropic effects, as homozygosity in males has been associated with poor sperm motility. We postulate that this is caused by the disruption of the CCDC108 gene located at one of the inversion breakpoints. CCDC108 is a poorly characterized protein, but it contains a MSP (major sperm protein) domain and is expressed in testis. The study illustrates several characteristic features of the genetic diversity present in domestic animals, including the evolution of alleles by two or more consecutive mutations and the fact that structural changes have contributed to fast phenotypic evolution.


Asunto(s)
Pollos/genética , Inversión Cromosómica/genética , Cresta y Barbas , Proteínas de Homeodominio/genética , Mutación , Animales , Evolución Biológica , Cresta y Barbas/anatomía & histología , Cresta y Barbas/crecimiento & desarrollo , Epistasis Genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Masculino , Mesodermo/citología , Fenotipo , Estructura Terciaria de Proteína , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo , Motilidad Espermática/genética , Motilidad Espermática/fisiología , Testículo/metabolismo
13.
PLoS Biol ; 9(3): e1001028, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21423653

RESUMEN

Vertebrate skin is characterized by its patterned array of appendages, whether feathers, hairs, or scales. In avian skin the distribution of feathers occurs on two distinct spatial levels. Grouping of feathers within discrete tracts, with bare skin lying between the tracts, is termed the macropattern, while the smaller scale periodic spacing between individual feathers is referred to as the micropattern. The degree of integration between the patterning mechanisms that operate on these two scales during development and the mechanisms underlying the remarkable evolvability of skin macropatterns are unknown. A striking example of macropattern variation is the convergent loss of neck feathering in multiple species, a trait associated with heat tolerance in both wild and domestic birds. In chicken, a mutation called Naked neck is characterized by a reduction of body feathering and completely bare neck. Here we perform genetic fine mapping of the causative region and identify a large insertion associated with the Naked neck trait. A strong candidate gene in the critical interval, BMP12/GDF7, displays markedly elevated expression in Naked neck embryonic skin due to a cis-regulatory effect of the causative mutation. BMP family members inhibit embryonic feather formation by acting in a reaction-diffusion mechanism, and we find that selective production of retinoic acid by neck skin potentiates BMP signaling, making neck skin more sensitive than body skin to suppression of feather development. This selective production of retinoic acid by neck skin constitutes a cryptic pattern as its effects on feathering are not revealed until gross BMP levels are altered. This developmental modularity of neck and body skin allows simple quantitative changes in BMP levels to produce a sparsely feathered or bare neck while maintaining robust feather patterning on the body.


Asunto(s)
Tipificación del Cuerpo , Pollos , Plumas/embriología , Piel/anatomía & histología , Piel/embriología , Animales , Secuencia de Bases , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Pollo , Pollos/genética , Análisis Mutacional de ADN , Plumas/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Análisis por Micromatrices , Datos de Secuencia Molecular , Fenotipo , Transducción de Señal , Piel/metabolismo , Tretinoina/metabolismo
14.
Genet Sel Evol ; 46: 14, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24552175

RESUMEN

BACKGROUND: Coccidiosis is a major parasitic disease that causes huge economic losses to the poultry industry. Its pathogenicity leads to depression of body weight gain, lesions and, in the most serious cases, death in affected animals. Genetic variability for resistance to coccidiosis in the chicken has been demonstrated and if this natural resistance could be exploited, it would reduce the costs of the disease. Previously, a design to characterize the genetic regulation of Eimeria tenella resistance was set up in a Fayoumi × Leghorn F2 cross. The 860 F2 animals of this design were phenotyped for weight gain, plasma coloration, hematocrit level, intestinal lesion score and body temperature. In the work reported here, the 860 animals were genotyped for a panel of 1393 (157 microsatellites and 1236 single nucleotide polymorphism (SNP) markers that cover the sequenced genome (i.e. the 28 first autosomes and the Z chromosome). In addition, with the aim of finding an index capable of explaining a large amount of the variance associated with resistance to coccidiosis, a composite factor was derived by combining the variables of all these traits in a single variable. QTL detection was performed by linkage analysis using GridQTL and QTLMap. Single and multi-QTL models were applied. RESULTS: Thirty-one QTL were identified i.e. 27 with the single-QTL model and four with the multi-QTL model and the average confidence interval was 5.9 cM. Only a few QTL were common with the previous study that used the same design but focused on the 260 more extreme animals that were genotyped with the 157 microsatellites only. Major differences were also found between results obtained with QTLMap and GridQTL. CONCLUSIONS: The medium-density SNP panel made it possible to genotype new regions of the chicken genome (including micro-chromosomes) that were involved in the genetic control of the traits investigated. This study also highlights the strong variations in QTL detection between different models and marker densities.


Asunto(s)
Pollos/genética , Pollos/parasitología , Coccidiosis/veterinaria , Eimeria tenella/aislamiento & purificación , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/parasitología , Animales , Coccidiosis/genética , Cruzamientos Genéticos , Variación Genética , Genotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
15.
Poult Sci ; 103(5): 103609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547541

RESUMEN

Vaccination is one of the most effective strategies for preventing infectious diseases but individual vaccine responses are highly heterogeneous. Host genetics and gut microbiota composition are 2 likely drivers of this heterogeneity. We studied 94 animals belonging to 4 lines of laying hens: a White Leghorn experimental line genetically selected for a high antibody response against the Newcastle Disease Virus (NDV) vaccine (ND3) and its unselected control line (CTR), and 2 commercial lines (White Leghorn [LEG] and Rhode Island Red [RIR]). Animals were reared in the same conditions from hatching to 42 d of age, and animals from different genetic lines were mixed. Animals were vaccinated at 22 d of age and their humoral vaccine response against NDV was assessed by hemagglutination inhibition assay and ELISA from blood samples collected at 15, 19, and 21 d after vaccination. The immune parameters studied were the 3 immunoglobulins subtypes A, M, and Y and the blood cell composition was assessed by flow cytometry. The composition of the cecal microbiota was assessed at the end of the experiment by analyzing amplified 16S rRNA gene sequences to obtain amplicon sequence variants (ASV). The 4 lines showed significantly different levels of NDV vaccine response at the 3 measured points, with, logically, a higher response of the genetically selected ND3 line, and intermediate and low responses for the unselected CTR control line and for the 2 commercial lines, respectively. The ND3 line displayed also a higher proportion of immunoglobulins (IgA, IgM, and IgY). The RIR line showed the most different blood cell composition. The 4 lines showed significantly different microbiota characteristics: composition, abundances at all taxonomic levels, and correlations between genera and vaccine response. The tested genetic lines differ for immune parameters and gut microbiota composition and functions. These phenotypic differences can be attributed to genetic differences between lines. Causal relationships between both types of parameters are discussed and will be investigated in further studies.


Asunto(s)
Ciego , Pollos , Microbioma Gastrointestinal , Virus de la Enfermedad de Newcastle , Vacunas Virales , Animales , Pollos/inmunología , Pollos/genética , Pollos/microbiología , Femenino , Virus de la Enfermedad de Newcastle/inmunología , Vacunas Virales/inmunología , Ciego/microbiología , Ciego/inmunología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/inmunología , Enfermedad de Newcastle/inmunología , Vacunación/veterinaria , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
16.
BMC Genomics ; 13: 442, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22937744

RESUMEN

BACKGROUND: The lavender phenotype in quail is a dilution of both eumelanin and phaeomelanin in feathers that produces a blue-grey colour on a wild-type feather pattern background. It has been previously demonstrated by intergeneric hybridization that the lavender mutation in quail is homologous to the same phenotype in chicken, which is caused by a single base-pair change in exon 1 of MLPH. RESULTS: In this study, we have shown that a mutation of MLPH is also associated with feather colour dilution in quail, but that the mutational event is extremely different. In this species, the lavender phenotype is associated with a non-lethal complex mutation involving three consecutive overlapping chromosomal changes (two inversions and one deletion) that have consequences on the genomic organization of four genes (MLPH and the neighbouring PRLH, RAB17 and LRRFIP1). The deletion of PRLH has no effect on the level of circulating prolactin. Lavender birds have lighter body weight, lower body temperature and increased feed consumption and residual feed intake than wild-type plumage quail, indicating that this complex mutation is affecting the metabolism and the regulation of homeothermy. CONCLUSIONS: An extensive overlapping chromosome rearrangement was associated with a non-pathological Mendelian trait and minor, non deleterious effects in the lavender Japanese quail which is a natural knockout for PRLH.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Coturnix/genética , Plumas , Pigmentación/genética , Animales , Proteínas Aviares/genética , Temperatura Corporal , Coturnix/crecimiento & desarrollo , Conducta Alimentaria , Femenino , Masculino , Mutación , Fenotipo , Análisis de Secuencia de ADN
17.
BMC Genomics ; 13: 551, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23066875

RESUMEN

BACKGROUND: As for other non-model species, genetic analyses in quail will benefit greatly from a higher marker density, now attainable thanks to the evolution of sequencing and genotyping technologies. Our objective was to obtain the first genome wide panel of Japanese quail SNP (Single Nucleotide Polymorphism) and to use it for the fine mapping of a QTL for a fear-related behaviour, namely tonic immobility, previously localized on Coturnix japonica chromosome 1. To this aim, two reduced representations of the genome were analysed through high-throughput 454 sequencing: AFLP (Amplified Fragment Length Polymorphism) fragments as representatives of genomic DNA, and EST (Expressed Sequence Tag) as representatives of the transcriptome. RESULTS: The sequencing runs produced 399,189 and 1,106,762 sequence reads from cDNA and genomic fragments, respectively. They covered over 434 Mb of sequence in total and allowed us to detect 17,433 putative SNP. Among them, 384 were used to genotype two Advanced Intercross Lines (AIL) obtained from three quail lines differing for duration of tonic immobility. Despite the absence of genotyping for founder individuals in the analysis, the previously identified candidate region on chromosome 1 was refined and led to the identification of a candidate gene. CONCLUSIONS: These data confirm the efficiency of transcript and AFLP-sequencing for SNP discovery in a non-model species, and its application to the fine mapping of a complex trait. Our results reveal a significant association of duration of tonic immobility with a genomic region comprising the DMD (dystrophin) gene. Further characterization of this candidate gene is needed to decipher its putative role in tonic immobility in Coturnix.


Asunto(s)
Proteínas Aviares/genética , Mapeo Cromosómico , Coturnix/genética , Distrofina/genética , Estudios de Asociación Genética , Genoma , Pérdida de Tono Postural , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Pollos/genética , Cromosomas , Cruzamientos Genéticos , Etiquetas de Secuencia Expresada , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Transcriptoma
18.
PLoS Genet ; 5(6): e1000512, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19521496

RESUMEN

Pea-comb is a dominant mutation in chickens that drastically reduces the size of the comb and wattles. It is an adaptive trait in cold climates as it reduces heat loss and makes the chicken less susceptible to frost lesions. Here we report that Pea-comb is caused by a massive amplification of a duplicated sequence located near evolutionary conserved non-coding sequences in intron 1 of the gene encoding the SOX5 transcription factor. This must be the causative mutation since all other polymorphisms associated with the Pea-comb allele were excluded by genetic analysis. SOX5 controls cell fate and differentiation and is essential for skeletal development, chondrocyte differentiation, and extracellular matrix production. Immunostaining in early embryos demonstrated that Pea-comb is associated with ectopic expression of SOX5 in mesenchymal cells located just beneath the surface ectoderm where the comb and wattles will subsequently develop. The results imply that the duplication expansion interferes with the regulation of SOX5 expression during the differentiation of cells crucial for the development of comb and wattles. The study provides novel insight into the nature of mutations that contribute to phenotypic evolution and is the first description of a spontaneous and fully viable mutation in this developmentally important gene.


Asunto(s)
Pollos/genética , Cresta y Barbas/crecimiento & desarrollo , Dosificación de Gen , Intrones , Mutación , Factores de Transcripción SOXD/genética , Animales , Diferenciación Celular , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Mapeo Cromosómico , Cresta y Barbas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Masculino , Datos de Secuencia Molecular , Fenotipo , Factores de Transcripción SOXD/metabolismo
19.
Pigment Cell Melanoma Res ; 34(6): 1015-1028, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33793042

RESUMEN

Color patterns within individual feathers are common in birds but little is known about the genetic mechanisms causing such patterns. Here, we investigate the genetic basis for autosomal barring in chicken, a horizontal striping pattern on individual feathers. Using an informative backcross, we demonstrate that the MC1R locus is strongly associated with this phenotype. A deletion at SOX10, underlying the dark brown phenotype on its own, affects the manifestation of the barring pattern. The coding variant L133Q in MC1R is the most likely causal mutation for autosomal barring in this pedigree. Furthermore, a genetic screen across six different breeds showing different patterning phenotypes revealed that the most striking shared characteristics among these breeds were that they all carried the MC1R alleles Birchen or brown. Our data suggest that the presence of activating MC1R mutations enhancing pigment synthesis is an important mechanism underlying pigmentation patterns on individual feathers in chicken. We propose that MC1R and its antagonist ASIP play a critical role for determining within-feather pigmentation patterns in birds by acting as activator and inhibitor possibly in a Turing reaction-diffusion model.


Asunto(s)
Alelos , Proteínas Aviares/genética , Pollos/genética , Sitios Genéticos , Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética , Animales , Proteínas Aviares/metabolismo , Pollos/metabolismo , Plumas/metabolismo , Genotipo , Receptor de Melanocortina Tipo 1/metabolismo
20.
Front Genet ; 12: 655707, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262593

RESUMEN

In addition to their common usages to study gene expression, RNA-seq data accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous individuals from different populations. SNP detection by RNA-seq is particularly interesting for livestock species since whole genome sequencing is expensive and exome sequencing tools are unavailable. These SNPs detected in expressed regions can be used to characterize variants affecting protein functions, and to study cis-regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest. However, gene expression can be highly variable, and filters for SNP detection using the popular GATK toolkit are not yet standardized, making SNP detection and genotype calling by RNA-seq a challenging endeavor. We compared SNP calling results using GATK suggested filters, on two chicken populations for which both RNA-seq and DNA-seq data were available for the same samples of the same tissue. We showed, in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%) and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data from one tissue can be used to (i) detect SNPs with a strong predicted impact on proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression, with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze population genetic using such SNPs located in expressed regions. This work shows that RNA-seq data can be used with good confidence to detect SNPs and associated GT within various populations and used them for different analyses as GTEx studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA