Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 486: 116941, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677601

RESUMEN

Nitrogen mustard (NM; mechlorethamine) is a cytotoxic vesicant known to cause acute lung injury which can progress to chronic disease. Due to the complex nature of NM injury, it has been difficult to analyze early responses of resident lung cells that initiate inflammation and disease progression. To investigate this, we developed a model of acute NM toxicity using murine precision cut lung slices (PCLS), which contain all resident lung cell populations. PCLS were exposed to NM (1-100 µM) for 0.5-3 h and analyzed 1 and 3 d later. NM caused a dose-dependent increase in cytotoxicity and a reduction in metabolic activity, as measured by LDH release and WST-1 activity, respectively. Optimal responses were observed with 50 µM NM after 1 h incubation and these conditions were used in further experiments. Analysis of PCLS bioenergetics using an Agilent Seahorse showed that NM impaired both glycolytic activity and mitochondrial respiration. This was associated with injury to the bronchial epithelium and a reduction in methacholine-induced airway contraction. NM was also found to cause DNA damage in bronchial epithelial cells in PCLS, as measured by expression of γ-H2AX, and to induce oxidative stress, which was evident by a reduction in glutathione levels and upregulation of the antioxidant enzyme catalase. Cleaved caspase-3 was also upregulated in airway smooth muscle cells indicating apoptotic cell death. Characterizing early events in NM toxicity is key in identifying therapeutic targets for the development of efficacious countermeasures.


Asunto(s)
Pulmón , Mecloretamina , Animales , Mecloretamina/toxicidad , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Ratones , Daño del ADN , Ratones Endogámicos C57BL , Relación Dosis-Respuesta a Droga , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Sustancias para la Guerra Química/toxicidad , Glucólisis/efectos de los fármacos , Masculino , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología
2.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513841

RESUMEN

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Asunto(s)
Acetilcisteína , Metabolismo Energético , Lesión Pulmonar , Mecloretamina , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Mecloretamina/toxicidad , Masculino , Metabolismo Energético/efectos de los fármacos , Ratas , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratas Sprague-Dawley , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Sustancias para la Guerra Química/toxicidad
3.
Diabetes Obes Metab ; 26(5): 1582-1592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38246697

RESUMEN

AIM: Chronotype reflects a circadian rhythmicity that regulates endothelial function. While the morning chronotype (MORN) usually has low cardiovascular disease risk, no study has examined insulin action on endothelial function between chronotypes. We hypothesized intermediate chronotypes (INT) would have lower vascular insulin sensitivity than morning chronotype (MORN). MATERIALS AND METHODS: Adults with obesity were classified per Morningness-Eveningness Questionnaire (MEQ) as either MORN (n = 27, 22 female, MEQ = 63.7 ± 4.7, 53.8 ± 6.7 years, 35.3 ± 4.9 kg/m2) or INT (n = 29, 23 female, MEQ = 48.8 ± 6.7, 56.6 ± 9.0 years, 35.7 ± 6.1 kg/m2). A 120 min euglycaemic-hyperinsulinaemic clamp (40 mU/m2/min, 90 mg/dl) was conducted to assess macrovascular insulin sensitivity via brachial artery flow-mediated dilation (%FMD; conduit artery), post-ischaemic flow velocity (resistance arteriole), as well as microvascular insulin sensitivity via contrast-enhanced ultrasound [e.g. microvascular blood volume (perfusion)]. Fasting plasma arginine and citrulline, as well as fasting and clamp-derived plasma endothelin-1 and nitrate/nitrite, were assessed as surrogates of vasoconstriction and nitric oxide-mediated vasodilation. Aerobic fitness (VO2max) and body composition (dual-energy X-ray absorptiometry) were also collected. RESULTS: MORN had a higher VO2max compared with INT (p < .01), although there was no difference in fat mass. While fasting FMD was similar between groups, insulin lowered FMD corrected to shear stress and microvascular blood volume in INT compared with MORN after co-varying for VO2max (both p ≤ .02). INT also had a lower fasting nitrate (p = .03) and arginine (p = .07). Higher MEQ correlated with elevated FMD (r = 0.33, p = .03) and lower post-ischaemic flow velocity (r = -0.33, p = .03) as well as shear rate (r = -0.36, p = .02) at 120 min. CONCLUSION: When measured during the morning, INT had a lower vascular insulin sensitivity than MORN. Additional work is needed to understand endothelial function differences among chronotypes to optimize cardiovascular disease risk reduction.


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Adulto , Humanos , Femenino , Cronotipo , Nitratos , Obesidad , Arteria Braquial/fisiología , Insulina , Endotelio Vascular , Vasodilatación , Arginina
4.
Toxicol Sci ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897669

RESUMEN

Macrophages play a key role in ozone-induced lung injury by regulating both the initiation and resolution of inflammation. These distinct activities are mediated by pro-inflammatory and anti-inflammatory/proresolution macrophages which sequentially accumulate in injured tissues. Macrophage activation is dependent, in part, on intracellular metabolism. Herein, we used RNA-sequencing (seq) to identify signaling pathways regulating macrophage immunometabolic activity following exposure of mice to ozone (0.8 ppm, 3 hr) or air control. Analysis of lung macrophages using an Agilent Seahorse showed that inhalation of ozone increased macrophage glycolytic activity and oxidative phosphorylation at 24 and 72 hr post exposure. An increase in the percentage of macrophages in S phase of the cell cycle was observed 24 hr post ozone. RNA-seq revealed significant enrichment of pathways involved in innate immune signaling and cytokine production among differentially expressed genes at both 24 and 72 hr after ozone, while pathways involved in cell cycle regulation were upregulated at 24 hr and intracellular metabolism at 72 hr. An interaction network analysis identified tumor suppressor 53 (TP53), E2F family of transcription factors (E2Fs), Cyclin Dependent Kinase Inhibitor 1A (CDKN1a/p21), and Cyclin D1 (CCND1) as upstream regulators of cell cycle pathways at 24 hr and TP53, nuclear receptor subfamily 4 group a member 1 (NR4A1/Nur77), and estrogen receptor alpha (ESR1/ERα) as central upstream regulators of mitochondrial respiration pathways at 72 hr. To assess whether ERα regulates metabolic activity, we used ERα-/-- mice. In both air and ozone exposed mice, loss of ERα resulted in increases in glycolytic capacity and glycolytic reserve in lung macrophages with no effect on mitochondrial oxidative phosphorylation. Taken together, these results highlight the complex interaction between cell cycle, intracellular metabolism, and macrophage activation which may be important in the initiation and resolution of inflammation following ozone exposure.

5.
Toxicol Sci ; 200(2): 299-311, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749002

RESUMEN

Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.


Asunto(s)
Modelos Animales de Enfermedad , Endotoxemia , Lipopolisacáridos , Estrés Oxidativo , Ozono , Animales , Ozono/toxicidad , Estrés Oxidativo/efectos de los fármacos , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Ratones , Ratones Endogámicos C57BL , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Inflamación/inducido químicamente , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo
6.
iScience ; 26(12): 108567, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38144454

RESUMEN

Lipid membranes and lipid-rich organelles are targets of peroxynitrite (ONOO-), a highly reactive species generated under nitrative stress. We report a membrane-localized phospholipid (DPPC-TC-ONOO-) that allows the detection of ONOO- in diverse lipid environments: biomimetic vesicles, mammalian cell compartments, and within the lung lining. DPPC-TC-ONOO- and POPC self-assemble to membrane vesicles that fluorogenically and selectively respond to ONOO-. DPPC-TC-ONOO-, delivered through lipid nanoparticles, allowed for ONOO- detection in the endoplasmic reticulum upon cytokine-induced nitrative stress in live mammalian cells. It also responded to ONOO- within lung tissue murine models upon acute lung injury. We observed nitrative stress around bronchioles in precision cut lung slices exposed to nitrogen mustard and in pulmonary macrophages following intratracheal bleomycin challenge. Results showed that DPPC-TC-ONOO- functions specifically toward iNOS, a key enzyme modulating nitrative stress, and offers significant advantages over its hydrophilic analog in terms of localization and signal generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA