Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Metab ; 140(3): 107693, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716025

RESUMEN

Newborn screening (NBS) began a revolution in the management of biochemical genetic diseases, greatly increasing the number of patients for whom dietary therapy would be beneficial in preventing complications in phenylketonuria as well as in a few similar disorders. The advent of next generation sequencing and expansion of NBS have markedly increased the number of biochemical genetic diseases as well as the number of patients identified each year. With the avalanche of new and proposed therapies, a second wave of options for the treatment of biochemical genetic disorders has emerged. These therapies range from simple substrate reduction to enzyme replacement, and now ex vivo gene therapy with autologous cell transplantation. In some instances, it may be optimal to introduce nucleic acid therapy during the prenatal period to avoid fetopathy. However, as with any new therapy, complications may occur. It is important for physicians and other caregivers, along with ethicists, to determine what new therapies might be beneficial to the patient, and which therapies have to be avoided for those individuals who have less severe problems and for which standard treatments are available. The purpose of this review is to discuss the "Standard" treatment plans that have been in place for many years and to identify the newest and upcoming therapies, to assist the physician and other healthcare workers in making the right decisions regarding the initiation of both the "Standard" and new therapies. We have utilized several diseases to illustrate the applications of these different modalities and discussed for which disorders they may be suitable. The future is bright, but optimal care of the patient, including and especially the newborn infant, requires a deep knowledge of the disease process and careful consideration of the necessary treatment plan, not just based on the different genetic defects but also with regards to different variants within a gene itself.


Asunto(s)
Errores Innatos del Metabolismo , Fenilcetonurias , Recién Nacido , Lactante , Embarazo , Femenino , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/terapia , Errores Innatos del Metabolismo/diagnóstico , Tamizaje Neonatal , Fenilcetonurias/genética , Fenilcetonurias/terapia , Biología Molecular , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166808, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37454773

RESUMEN

Ionic calcium (Ca2+) is a key messenger in signal transduction and its mitochondrial uptake plays an important role in cell physiology. This uptake is mediated by the mitochondrial Ca2+ uniporter (MCU), which is regulated by EMRE (essential MCU regulator) encoded by the SMDT1 (single-pass membrane protein with aspartate rich tail 1) gene. This work presents the genetic, clinical and cellular characterization of two patients harbouring SMDT1 variants and presenting with muscle problems. Analysis of patient fibroblasts and complementation experiments demonstrated that these variants lead to absence of EMRE protein, induce MCU subcomplex formation and impair mitochondrial Ca2+ uptake. However, the activity of oxidative phosphorylation enzymes, mitochondrial morphology and membrane potential, as well as routine/ATP-linked respiration were not affected. We hypothesize that the muscle-related symptoms in the SMDT1 patients result from aberrant mitochondrial Ca2+ uptake.


Asunto(s)
Canales de Calcio , Calcio , Humanos , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Transporte Iónico , Mitocondrias/genética , Mitocondrias/metabolismo , Músculos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA